A random matrix model for random approximate t-designs

Date: Wednesday, January 25, 2023
Time: 14:00
Location: ICTQT, room 319
Passcode: 3SM3fW
seminar

Speaker: Adam Sawicki (Centre for Theoretical Physics, Polish Academy of Sciences)

Abstract For a Haar random set $\mathcal{S}\subset U(d)$ of quantum gates we consider the uniform measure $\nu_\mc{S}$ whose support is given by $\mathcal{S}$. The measure $\nu_\mc{S}$ can be regarded as a $\delta(\nu_\mc{S},t)$-approximate $t$-design, $t\in\mathbb{Z}_+$. We propose a random matrix model that aims to describe the probability distribution of $\delta(\nu_\mathcal{S},t)$ for any $t$. Our model is given by a block diagonal matrix whose blocks are independent, given by Gaussian or Ginibre ensembles, and their number, size and type is determined by $t$. We prove that, the operator norm of this matrix, $\delta({t})$, is the random variable to which $\sqrt{|\mathcal{S}|}\delta(\nu_\mc{S},t)$ converges in distribution when the number of elements in $\mc{S}$ grows to infinity. Moreover, we characterize our model giving explicit bounds on the tail probabilities $\mathbb{P}(\delta(t)>2+\epsilon)$, for any $\epsilon>0$. We also show that our model satisfies the so-called spectral gap conjecture, i.e. we prove that with the probability $1$ there is $t\in\mathbb{Z}_+$ such that $\sup_{k\in\mathbb{Z}_{+}}\delta(k)=\delta(t)$. Numerical simulations give convincing evidence that the proposed model is actually almost exact for any cardinality of $\mc{S}$. The heuristic explanation of this phenomenon, that we provide, leads us to conjecture that the tail probabilities $\mathbb{P}(\sqrt{\mathcal{S}}\delta(\nu_\mathcal{S},t)>2+\epsilon)$ are bounded from above by the tail probabilities $\mathbb{P}(\delta(t)>2+\epsilon)$ of our random matrix model. In particular our conjecture implies that a Haar random set $\mathcal{S}\subset U(d)$ satisfies the spectral gap conjecture with the probability $1$.