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We identify five selected open problems in the theory of quantum information, which are rather
simple to formulate, were well-studied in the literature, but are technically not easy. As these
problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The
first four concern existence of certain objects relevant for quantum information, namely a family of
symmetric informationally complete generalized measurements in an infinite sequence of dimensions,
mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems
with six levels each and bound entangled states with negative partial transpose. The fifth problem
requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award
for solving each of them is announced.

Dedicated to memory
of Roman Stanisław Ingarden (1920-2011)
on his centennial birthday

I. INTRODUCTION

Roman Stanisław Ingarden, one of the founding fathers
of the field, wrote in 1975: ‘The aim of the present paper
was only to give a general formulation of the quantum
information theory of the Shannon type. The theory re-
quires further investigations and mathematical develop-
ment’. At the time this paper Quantum information the-
ory [1] was written, exactly 45 years ago, it was difficult
to predict that such a piece of research in mathematical
physics could inspire a vast new field of science and trig-
ger a remarkable progress in experimental physics and
yield numerous applications.

Indeed, the field of quantum information (see [2, 3])
with its cornerstones of pioneering discoveries of quan-
tum money [4], quantum cryptography [5, 6], quantum
dense coding [7], quantum teleportation [8], quantum in-
formation compression [9] and quantum computing [10–
12] has visibly matured in recent days, therefore, more
and more often we hear and read about quantum tech-
nologies. The latter aim at turning famous theoretical
concepts such as quantum cryptography into fully oper-
ational devices. These application, based on ‘standard’
technologies developed so far, possess essential function-
alities solely operating on quantum principles.

Along the course of the, so called, Second Quantum
Revolution, experimental efforts are mostly directed to-
wards solutions to practical problems, such as mitiga-
tion of the noise and decoherence effects, or scalability.
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Therefore, a discussion of perspectives within experimen-
tal quantum information could certainly focus on new
techniques allowing for a better protection and control of
quantum systems.

On the theory side we observe a similar tendency. Cur-
rent research focus is on optimization of theoretical pro-
tocols and experimental schemes, as well as discussion
of practical limitations of the techniques developed. An
example of a very recent, beautiful result [13] from the
field of quantum metrology can serve us the purpose of
illustrating the above trend. While it is known that, so
called, superresolution techniques [14] allow one to in-
crease the precision beyond that of typical diffraction-
limited direct imaging, robustness of this method is not
fully understood. In [13], a scheme based on intensity
measurements involving spatial mode decomposition has
been scrutinized against experimental noise stemming
from the crosstalk between the modes used. Deterio-
ration of the quantum superresolution benefits has been
found. Based on the above example it is easy to imag-
ine a perspective article devoted to theoretical quantum
information, pointing areas and problems, within all the
pillars of quantum technologies1, which require further
attention.

In our manuscript, however, we take a perspective vis-
ibly different from that described above. Being aware of
the currently relevant, particular challenges of theoreti-
cal quantum information, we ask ourselves whether there
is still room for ground breaking, though not completely
unexpected, developments. To let this question have an
affirmative answer, we identify open problems with such
a breakthrough potential. We require the problems to
be:

1 For instance, within European Quantum Flagship initiative,
quantum technologies are split into the following five pillars:
quantum communication, quantum simulations, quantum sens-
ing and metrology, quantum computing, quantum basic science.
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• well-studied and extensively covered by the topical
literature, so that a convincing evidence of their
importance exists;

• technically hard, so that they require methodology
beyond the toolbox available at the moment;

• universal and with a rich mathematical underpin-
ning, so that they are not associated with narrowly
defined platforms or protocols.

The first criterion assures the recognition, the proposed
problems have gained. Being well-studied implies that
the problems have a long history deeply immersed in the
field of (theoretical) quantum information, therefore, a
future solution shall expand the base of the field, rather
than one of its distant branches. The second criterion,
beyond offering an explanation why the problems still re-
main open, pertains to the future impact of the solutions.
Presumably advanced techniques necessary to tackle the
problems, perhaps not yet recognized or even established,
will likely make an impact beyond their initial niche.
Finally, since we observe the tendency towards special-
ization and narrowing of the research conducted, trends
which are essential at a stage where initially broad con-
cepts are being turned into concrete devices, we look for
breakthrough theoretical discoveries beyond this modus
operandi. Likely, only unexpected solutions to problems
which are not associated with a particular setup can in-
fluence the whole field of quantum information.

In our tight selection of the open questions to be of-
fered as a future inspiration and guideline for theoretical
research, we restrict our attention to five concrete prob-
lems. Why five? As it turns out, the number six, if used
to set the dimension of the Hilbert space, is still insuffi-
ciently well understood in context of quantum informa-
tion. While the above justification gives as good a reason
as any other reason, the first three problems described be-
low are in fact associated with symmetric configurations
in discrete Hilbert spaces, and two of them are to some
extent concerned with this special dimension.

II. DISCRETE STRUCTURES IN THE
HILBERT SPACE

The space of pure quantum states of a fixed dimen-
sion2

N is isotropic – no quantum state is ‘more equal
than others’. However, this property does not exclude ex-
istence of complex and at the same time well-organized
structures inside the Hilbert space, e.g. particular con-
stellations of quantum states with prescribed properties.

2 While presenting the problems we used notation common in each
subfield. Thus the reader is advised that the notation is not
entirely consistent throughout the entire paper. Consequently,
in different problems the symbols n, d, k and N have different
meaning.

It is easy to imagine, that each structure of such kind
nurtures a potential for quantum information protocols
such as those used in error correction, or particular ex-
perimental tasks, such as quantum tomography. Readers
familiar with the background of theoretical quantum in-
formation will likely recognize that mutually unbiased
bases (MUBs) and symmetric informationally complete
positive operator valued measures (SIC POVMs) provide
natural examples of such structures. Intriguingly, in both
cases there is an important missing piece of the puzzle
which we now turn into an open problem. Additionally,
we extend our discussion to cover the third constellation,
perhaps better known in classical considerations (there-
fore, below we introduce it in more detail), namely the
Latin squares (LS).

Following the common word of wisdom saying that the
proof of the pudding is in the eating we shall cut here the
general discussion and immediately pose the three prob-
lems associated with the three constellations/structures
mentioned above.

A. Existence of SIC POVMs

Problem 1: Construct SIC POVMs in an infinite se-
quence of dimensions, N1, N2, N3, . . .

Setup. A symmetric informationally complete posi-
tive operator valued measure [15, 16] associated with an
N -dimensional complex Hilbert space HN is given by a
set ofN2 vectors ∣ψj⟩ ∈ HN satisfying the following over-
lap relations,

∣⟨ψj∣ψk⟩∣2 =
Nδjk + 1

N + 1
, j, k = 1, . . . , N

2
. (1)

This set defines a generalized quantum measurement ca-
pable to extract complete information concerning any
density matrix of order N described by N2 − 1 real pa-
rameters. Moreover, such a constellation of N2 projec-
tors onto pure states forms a simplex inscribed in the
entire N2−1 dimensional set of density matrices of order
N – see Fig. 1 for an N = 2 example. For an accessible
guide to the SIC problem in low dimensions consult [17].

Motivation. From a mathematical point of view, we
ask about the maximal set of complex equiangular lines
[18] in a given dimension N . From a physical perspective
one looks for a scheme of an optimal quantum measure-
ment of an arbitrary size N , distinguished by the fact
that the number of projector operators is minimal possi-
ble required to gather complete information concerning
the analyzed state. Solving the SIC existence problem
for any dimension will significantly contribute to our un-
derstanding of the set-of-quantum-states’ geometry [19].

According to the 1999 dated conjecture by Zauner [15],
for any dimension N there exists a fiducial vector, such
that all remaining N

2 − 1 elements of the desired SIC
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FIG. 1. Four pure states ∣ψi⟩ span a regular tetrahedron
inscribed in the Bloch sphere and lead to a single-qubit sym-
metric informationally complete measurement (SIC POVM)
for N = 2. Can you find N2 pure states of size N such that
the corresponding projectors form a simplex inscribed into
the set of quantum states of a given order N?

can be obtained by acting on it with unitary matrices
representing elements of the Weyl–Heisenberg group.

Numerical solutions obtained in 2004 for all dimen-
sions up to N = 45 (Renes et al. [16]) were extended
in 2010 by Scott and Grassl [20] to N ≤ 67. Fur-
ther results from 2017 included dimensions N ≤ 121,
Scott [21] and N ≤ 151, Fuchs et al. [22]. In 2020
numerical solutions were known for N ≤ 193 and also
for N = 204, 224, 255, 288, 528, 725, 1155, 2208 (Grassl
[23]). Analitical solutions are known for N ≤ 53
[16, 20, 21, 24], and several other dimensions, including
N = 57, 61−63, 65, 67, 73, 74, 76, 78−80, 84, 86, 91, 93, 95,
97−99, 103, 109, 111, 120, 122, 124, 127, 129, 133, 134, 139,
143, 146, 147, 151, 155, 157, 163, 168, 169, 172, 181 − 183,
193, 195, 199, 201, 228, 259, 292, 323, 327, 364, 399, 403, 489,
844, 1299 – see [23, 25, 26].

However, in spite of a considerable research effort [27–
31], the general conjecture of Zauner remains unproven.
Finding a family of SICs in any infinite sequence of di-
mensions could become a decisive step in this direction.
Furthermore, let us emphasize inspiring connections to
some major open questions in algebraic number theory,
including a key part of the 12-th problem of Hilbert [32–
35].

B. MUBs in dimension six

Problem 2: Construct a set of at least 4 mutually
unbiased bases in dimension six or prove that there are
no 7 MUBs in H6.

Setup. Consider a set of K bases {∣ψmi ⟩} (1 ≤ m ≤ K,
1 ≤ i ≤ N) in N -dimensional complex Hilbert space
HN , so that all vectors in each basis are orthogonal,
⟨ψmi ∣ψmj ⟩ = δij . These bases are called mutually un-
biased if any two bases are unbiased, which means

∀i,j ∣⟨ψmi ∣ψnj ⟩∣2 =
1

N
, m ≠ n. (2)

It is relatively easy to show that there exist no more
than N + 1 MUBs in HN . Moreover, for any N ≥ 2,
there exist at least three MUBs (see Fig. 2 for an N = 2
example). If the dimension N is a prime number or a
power of a prime, N = p

k, there exists a complete set of
N + 1 MUBs [36, 37]. This implies that for a composite
dimension represented by a product of powers of primes,
N = p

k1
1 . . . p

km
m , with pk11 ≤ p

k2
2 ≤ ⋅ ⋅ ⋅ ≤ p

km
m , there exist

(at least) pk11 + 1 MUBs [15, 38]. It is also known that if
one finds N MUBs in dimension N the last (N + 1)-th
unbiased basis also exist [39], so the maximal number of
existing MUBs is either equal to N + 1, or it is less or
equal to N − 1.

Several methods to construct MUBs are known [38, 40,
41] and all solutions for dimensions 2 − 5 are classified
[42]. If N is a power of a prime, various properties of a
complete set of N +1 MUBs are already understood [43–
47], but otherwise the number of existing MUBs remains
unknown [48–50]. In particular, for N = 6 a complete
set would consist of seven MUBs, but up till now only
solutions containing three bases were found [51–60]. It
is however known that if a complete set of seven MUB
exists, it cannot contain a triple of product bases [61, 62].

FIG. 2. Three eigenbases of Pauli matrices σx, σy, σz span an
octahedron inscribed in the Bloch sphere and form a set of 3
mutually unbiased bases for N = 2. There exist 4, 5, and 6
MUBs in dimensions N = 3, 4 and 5, respectively. How many
MUBs there exist for N = 6?

Any unitary matrix which relates two unbiased bases,
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Uij = ⟨ψmi ∣ψnj ⟩, belongs to the set of complex Hadamard
matrices. This set consists of unitary matrices of order
N , such that all its entries have the same squared mod-
ulus, ∣Uij∣2 = 1/N . Interestingly, the set of complex
Hadamard matrices is again fully characterized [63–65]
up to N = 5. As several new complex Hadamard matri-
ces of order N = 6 were discovered a decade ago [66, 67],
it was tempting to expect that they could lead to certain
sets of four MUBs in this dimension [58]. However, up
till now the maximal number of MUBs for N = 6 remains
three, even though for larger dimensions further connec-
tions between Hadamard matrices and MUBs were found
[68].

Motivation. On the one hand, finding a complete set
of MUBs in dimension 6 would yield an optimal scheme
of orthogonal quantum measurement in this dimension.
More importantly, deciding whether such a configura-
tion exists has significant implications for foundations of
quantum theory, as up till now our understanding of ba-
sic properties of finite dimensional Hilbert spaces is not
complete. On the other hand, a possible non-existence
result is of a considerable mathematical interest, as it
would provide further arguments that the number 6 –
the smallest product of two different primes – is indeed
very special and ‘less equal than others’. Let us em-
phasize here that there is no affine plane of order six
and there are no orthogonal Latin squares of order six,
which inspires the subsequent problem. Research on the
MUBs reveals further intricate links between foundations
of quantum theory and several fields of mathematics, in-
cluding Galois rings, group theory, combinatorics, finite
fields and projective geometry [69–76].

C. Quantum Orthogonal Latin Squares

Problem 3: Determine whether there exist two quan-
tum orthogonal Latin squares [77, 78] of order six. In
other words, find a solution of the problem of 36 ‘en-
tangled officers’ of Euler or demonstrate that it does not
exist.

Setup. A Latin square of order N is filled with N
copies of N symbols arranged in a square in such a way
that no row nor column of the square contains the same
symbol twice. The name refers to papers of Leonhard
Euler [79], who used Latin characters as symbols to be
arranged. To enjoy a simple example use the Pauli matrix
and write down 2σx + 12. It is likely that the Euler’s
approach to the problem was rather different...

Two orthogonal Latin squares (also called Graeco-
Latin squares) of order N consist of N2 cells arranged
in a square with a pair of ordered symbols in each cell,
for instance one Greek character and one Latin. Ev-
ery row and every column of the square contains each
possible pair of symbols exactly once, and no two cells
contain the same ordered pair – see Fig. 3. A set of k

Latin squares which are pairwise orthogonal are called
mutually orthogonal Latin squares (MOLS). It is easy to
show that for a given N there exist no more than N − 1
MOLSs. Similarly with the case of the MUBs, this bound
is saturated if N is a prime or a power of a prime [80].

Historically, Euler analyzed the problem of 36 officers
from six regiments, each containing 6 officers of 6 different
ranks. They should be arranged before a parade into a
6 × 6 square such that each row and each column holds
only one officer from each regiment and only one officer
from each rank. Euler wrote in 1782 that this problem
has no solution [79] without providing a formal proof,
established only in 1901 by Gaston Tarry [81]. This result
implies that there is no pair of orthogonal Latin squares
of size 6, so that the upper bound for the number of
MOLS, in this case N − 1 = 5, is not saturated. For any
N ≥ 7 there exist at least two MOLS, in particular also
for N = 2×5 = 10 – consult a novel by Georges Perec [82].
In general, the problem of finding the maximal number
of MOLS for an arbitrary value of N remains open [83].

A♠ K♣ Q♢ J♥

K♥ A♢ J♣ Q♠

Q♣ J♠ A♥ K♢

J♢ Q♥ K♠ A♣

FIG. 3. An example of N = 4 Greaco-Latin square prepared
for bridge players [84]. Due to works of Euler and Tarry we
know that for N = 6 a similar design of 36 cards of 6 different
suits and 6 different ranks (or 36 officers of different ranks and
arms) does not exist. Is there a solution of the N = 6 problem
if we play bridge with quantum cards, like (∣K♣⟩+∣Q♦⟩)/

√
2,

or allow the officers of Euler to be entangled?

As a rule of thumb, for any interesting classical no-
tion one can find a quantum analogue. A quantum Latin
square is an N × N table of N2 vectors from N dimen-
sional Hilbert space HN arranged in such a way that
every row and every column of the table forms an or-
thonormal basis in the space [86]. Orthogonal quantum
Latin squares (OQLS) are defined [77] as a collection of
N

2 normalized vectors from a composite space HN⊗HN ,
which are mutually orthogonal so they form an orthonor-
mal basis. They are arranged in an N×N table such that
for every row (column) the symmetric superposition of
all states in each row (column) is a maximally entangled
state, for instance

∣ψ+⟩ =
1√
N

N

∑
j=1

∣j⟩⊗ ∣j⟩. (3)
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Any Graeco-Latin square leads to such a design, since it
suffices to treat the pair of classical objects (α,B) as a
product state, ∣α⟩⊗ ∣B⟩.

It is known that the generalized Bell state (3) is maxi-
mally entangled among all states of a bipartite N×N sys-
tem. For other systems, a natural question arises [87–96]:
What are the most entangled states for quantum systems
consisting of N systems with d levels each ? The answer
depends on the entanglement measure used [19], but al-
ready for a four-qutrit system there exist a state, which
displays maximal entanglement with respect to all three
possible splittings of the entire system into two pairs of
qutrits. Such a state is called absolutely maximally en-
tangled (AME) [97].

This notion can also be generalized for larger systems.
An n-partite pure state is called AME state if it is maxi-
mally entangled with respect all possible bipartitions [97],
so that all its reductions consisting of k subsystems, with
arbitrary k ≤ ⌊n/2⌋, are maximally mixed. A density
matrix on a given N -dimensional Hilbert space is maxi-
mally mixed, if it is proportional to the identity operator
on this space, ρ∗ = 1lN/N . It is known that there are no
AME states of 4 qubits [88], and equivalently, a pair of
QOLS does not exist for N = 2. Scott demonstrated [90]
that in the case systems of m qubits the AME states so
exist for m = 3, 4, 5, 6 and also showed that they do not
exist for m ≥ 8. The last remaining issue of m = 7 qubits
was later solved in by Huber et al. [98], who proved
that such AME states do not exist. The list of currently
known AME states is available on line [99].

As there are no two orthogonal Latin squares (OLS)
of order six, the famous classical problem of 36 officers
of Euler has no solution [100]. An analogous quantum
problem, which involves 36 entangled officers, remains
open.

Motivation. This problem can be reformulated in
several other settings. To present them we need to review
some further notions. A unitary matrix U of size N2

is called 2-unitary [101] if both the partially transposed
matrix UΓ and the reshuffled matrix UR remain unitary
– for the definitions of these reorderings of the entries of
a matrix see (4) and consult [19].

Any matrix of a square size can be represented as a ten-
sor Tijkl with four indices. Such a tensor can be reshaped
into a matrix Xµν using composed indices in three dif-
ferent ways: a) µ = µ(ij), b) µ = µ(ik) and c) µ = µ(il),
while the second index ν is obtained in each case from
the remaining two indices. A tensor T is called perfect
[102] if for any of these three ways of reshaping it, the
outcome matrix becomes unitary. Hence any flattening
of a perfect tensor forms a 2-unitary matrix.

Establishing a negative result concerning existence of
two quantum orthogonal Latin squares of order six is
equivalent to proving that

i) there is no AME state of four subsystems with six
levels each [97, 103] thus the corresponding quan-

tum error correction code [104], written ((4, 1, 3))6,
does not exist;

ii) there is no 2-unitary matrix U ∈ U(36);

iii) there is no perfect tensor with four indices, each
running from 1 to 6.

Furthermore, a negative result would directly imply
the famous Euler conjecture that there are no two or-
thogonal Latin squares of order 6. On the other hand, a
positive result could become an important step towards
development of quantum combinatorics: a search for par-
ticular constellations of discrete quantum objects, with
special properties of symmetry and balance, hidden in
the continuous Hilbert space. As the standard combi-
natorics deals with discrete objects and is related to the
group of permutations, its quantum analogue concerns
the continuous space of quantum states and relies on the
continuous unitary group.

Since the problems number 2 and number 3 refer to
the same dimension (equal to their product), N = 6, it is
natural to speculate that they might be somehow related.
It seems, however, that a connection between problems
of finding the maximal number of MOLSs and MUBs
for a given dimension is not a direct one [74, 75]. On
the other hand several links between both problems were
established: Wocjan and Beth used (classical) MOLSs
to construct a set of 6 MUBs in dimension N = 676,
which beats the prime power construction applied to the
factorization N = 2

2
13

2 yielding only 4 + 1 = 5 MUBs
[48]. Furthermore, Musto used quantum Latin squares to
construct in square dimensions mutually unbiased bases
consisting of maximally entangled states [105].

D. Further perspectives I

The three problems discussed above concern finite di-
mensional Hilbert spaces. However, the notion of MUBs
(or mutually unbiased measurements – MUMs) is also
present in experimentally relevant setups involving con-
tinuous [106] or coarse-grained [107] systems. While in
the continuous case we maximally have 3 MUBs [106], in
the coarse-grained scenario [108] the situation is much
more elaborate. Interestingly, the special dimension
N = 6 is not at all distinguished in the coarse-grained set-
ting, since the systems of even dimension behave like the
continuous ones (no more than 3 MUMs) — only odd di-
mensions nurture potential for more [108]. Whether this
fact is connected to the conundrum of N = 6 for discrete
systems remains and open question at the moment.

Real Hadamard gates play a key role in numerous
schemes of quantum information processing. More gen-
eral, complex Hadamard matrices are instrumental in
Problem 2 concerning MUBs, but they become also
linked [109] to Problem 1 on SICs. These matrices
do exist in any dimension – as for any dimension N
we can write down the Fourier matrix FN – in contrast
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to real Hadamard matrices [49]. They were constructed
by Sylvester more than 150 years ago [110], but it was
Hadamard who first showed [111] that such matrices do
not exist unless N = 2 or N = 4k. The celebrated con-
jecture due to Paley [112] that they do exist for all di-
mensions not excluded by Hadamard is now confirmed
[113] up to N = 664. The point is that finding a solution
for N = 4k gives us no clues, whether a real Hadamard
matrix exists for N ′

= 4k + 4. We encounter a similar
situation in Problem 1, as finding SIC for a given N
sheds no light into the existence problem in dimension
N + 1. However, it is straightforward to construct an in-
finite family of Hadamard matrices in dimension N = 2

m

by tensor product, while we are still in search for a family
of SICs in an infinite sequence of dimensions. Knowing
a SIC configuration for a certain dimension N it might
be easier to look for another one in dimension N(N −2),
but such a SIC dimension tower [29, 30] remains, up till
now, of a finite size only.

The first two problems deal with pure quantum states
from a single space HN , while the last one requires to
consider at least its two copies, HN ⊗HN . Such a space
with a tensor product structure corresponds to a physical
system in which two subsystems can be distinguished.
This construction allows one to introduce product states
and entangled states, including the generalized Bell state
(3).

Problem 3 concentrates on the Hilbert space of di-
mension six, but it is clear that more than a single copy of
H6 has to be involved. Looking for a solution of the gen-
eralized Euler problem we are allowed to play with quan-
tum cards, cosϕ∣A♠⟩+ sinϕ∣K♥⟩, and analyze configu-
rations of 6

2
= 36 possibly entangled states in H6 ⊗H6.

To create entanglement in a bipartite N×N system we
need a global unitary gate, U ∈ U(N2), which couples
both subsystems. For any such a bipartite gate U one
defines an entangling power [90, 100, 114] as the average
linear entropy of entanglement [19] created when U acts
on a random product state sampled according to the Haar
measure on both subspaces.

A unitary matrix U of size N2, which saturates the
absolute bound for the entangling power, has to be 2-
unitary and therefore it allows one to construct the AME
state for four subsystems with N -levels each – see [115].
In the latter formulation of the problem devoted to the
search of distinguished AME pure states of four parties
[97, 99], one works with four subsystems with 6 levels
each, which are represented in the space H⊗4

6 .
Interestingly, the same problem can also be mapped

into a question concerning properties of certain mixed
states of the squared dimension. It was recently demon-
strated [116] that existence of the desired AME state of
four subsystems with 6 levels each is equivalent to the
bipartite separability of a certain mixed state ρ living in
H⊗8

6 = H⊗4
6 ⊗H⊗4

6 . As the dimension of the problem be-
comes thus very high, it is difficult to imagine that this
approach could give us soon a constructive answer to the

problem posed.

The above remarks exemplify a common observation
that various problems in one branch of mathematical
physics can reveal unexpected links to questions in ap-
parently distant fields of science. As the last Problem 3
is shown to be closely related to the various questions
concerning entanglement of mixed quantum states, we
are now ready to proceed to the second part of the paper
devoted exactly to these issues.

III. QUANTUM ENTANGLEMENT
AND ITS DISTILLABILITY

One of the most fundamental notions in the theory of
quantum information processing is that of entanglement.
We say that a bipartite product state is called separable,
while all other pure states are entangled. A density ma-
trix representing a mixed state is called entangled if it
cannot be represented as a convex combination of prod-
uct states [117].

Entanglement proved itself to be a crucial resource rel-
evant for quantum information processing. Therefore,
one of the major problems in this field has been, since the
early days of quantum information, to decide whether a
given quantum state of a composite system is separable
or entangled [118].

Perhaps surprisingly, up till now, this general problem
is solved only for 2⊗2 and 2⊗3 systems3, as in these cases
the single positive partial transpose criterion provides a
constructive answer [119]. Already for a 3⊗3 system, nei-
ther a finite number of positive-maps-based separability
criteria [120] nor a techique using finite-size semi-definite
programming [121] allows us to conclude whether a given
quantum state is entangled or not. Moreover, the known
procedure for deciding the separability of a given bipar-
tite quantum state in a finite number of steps [122] cannot
be applied in practice due to its high complexity.

The above problem, as well as the whole associated
subfield concerned with certification (tests) or quantifi-
cation (measures) of entanglement, gains a visibly less
attention in recent years. This occurs likely because a
lot has in fact been achieved, and it is relatively hard
to identify research directions promissing an intellectual
reward. Not to dream about giving a twist to the whole
subfield. Here we attempt to offer two such problems
which, when solved, are capable of boosting the research
on quantum entanglement per se.

A. Bound entanglement

Problem 4: Establish whether there exist bound en-

3 The system is called d ⊗ d
′ iff one associates with it the Hilbert

space with a tensor product structure, Hd ⊗Hd′ .
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tangled states with negative partial transpose.

Setup. To analyze quantum entanglement it is useful
to introduce the notion of partial transpose of a den-
sity matrix. Let ρ denote a bipartite quantum state
with matrix elements written in a product basis, ρij,lm =

⟨ij∣ρ∣lm⟩. Then its partial transposition, ρΓ, reads

⟨ij∣ρΓ∣lm⟩ = ⟨im∣ρ∣lj⟩. (4)

A quantum state is said to have positive partial transpose
(PPT) if all eigenvalues of its partial transpose are noneg-
ative. Otherwise, if some eigenvalues of ρΓ are strictly
smaller than zero, the state has negative partial trans-
pose (NPT).

The concept of entanglement distillation refers to pro-
tocols that allow to transform noisy entangled states to
maximally entangled states in a well defined scenario. It
was originally discovered in 1996 when explicit protocol
was proposed for a class of mixed two-qubit states [123]
and applied in its general form to quantum error cor-
rection [124] and cryptography [125]. Soon after it was
shown that all two-qubit entangled states are distillable
[126]. However, in higher dimensional systems some en-
tangled states can be distilled to a singlet form [127], but
there exist also nondistillable entangled states, which are
called bound entangled [128, 129].

If the dimension of a bipartite system is larger than six,
there exist entangled states with PPT property [130]. As
all entangled states with PPT property are nondistillable,
in these dimensions there exist bound entangled states
[128] and the set of these states has a positive measure
[131].

We analyze here Problem 4 with equal dimensions of
both subsystems, as the general case, d ≠ d

′, can be re-
duced to it. A d-dimensional4 bipartite state ρ defined on
a composite Hilbert space Hd ⊗ Hd is called distillable,
if it is n-copy distillable for some finite n. The prop-
erty of n-copy distillability means that there exist two-
dimensional (i.e. of rank two) projectors P and Q such
that the matrix (P ⊗ Q)[ρΓ]⊗n(P ⊗ Q) has a negative
eigenvalue [128, 129, 132]. It should be stressed that the
projectors P and Q act on the product (Hd)⊗n of all n
Hilbert spaces associated with left and right subsystems
of copies of the considered bipartite system respectively
— see [133, 134].

The question of NPT bound entanglement is closely re-
lated to a mathematical problem concerning 2-co-positive
maps [133, 135]. A linear map Λ ∶ Md(C) → Md(C)
acting on Hd is called positive iff it transforms any ma-
trix with non-negative eigenvalues into a matrix with
the same property. Furthermore, a linear map Λ is

4 We now on purpose denote the Hilbert-space dimension by d,
while in the former section we used N , in order to follow the
notation common in the subfield.

called k-positive if and only if the following extension
1lk ⊗ Λ ∶ Mk(C) ⊗ Md(C) → Mk(C) ⊗ Md(C) is posi-
tive, where 1lk stands for the identity map, which sends
any complex matrix from Mk(C) into itself. In partic-
ular 1-positivity is equivalent to positivity. The map is
called completely positive iff it is k-positive for any k. For
a finite dimension d, to ensure complete positivity it is
enough to check only k-positivity for k = d. A map Λ
is called k-co-positive (resp. completely co-positive ) if
and only if the composition S = T ◦Λ is k-positive (resp.
completely positive), where T stands for transposition. In
particular, 1-co-positive maps are called just co-positive.

Motivation. This is one of the long-standing open
questions of quantum information theory [133, 136]. It
provides a sharp distinction between the two-qubit case,
in which all entangled states are distillable [126], and
higher dimensional d ⊗ d problem, for which the ques-
tion of existence of bound entangled states with negative
partial transpose is open – see Fig. 4.

Its positive solution would therefore have several con-
sequences. If NPT bound entangled states exist then the
set of non-distillable entangled states is neither closed un-
der the tensor product nor under mixing – see [135]. The
latter means that there would exist two non-distillable
entangled states such that their mixture were distill-
able. This would imply that one of the central mea-
sures of entanglement theory, namely distillable entan-
glement (which describes asymptotic amount of entan-
glement that can be distilled from many copies of a given
state by local operations and classical communication
[118]) is neither additive nor convex [135].

Separable
= PPT

=Non-distillable
Distillable

Non-distillable

Separable

PPT

Distillable ?

d = 2 d > 2 

H  = Hd H d

FIG. 4. In the two-qubit problem, d = 2, the set of separable
states coincides with the set of PPT states and there are no
bound entangled states since any entangled state is distillable.
For higher dimensions, d > 2, one asks whether the hypothet-
ical region representing bound entangled states with negative
partial transpose, depicted in yellow, is empty or not.

In this way, a possible affirmative solution to the
present problem would lead to an extremal example of
superadditivity. Namely, it has been proven that for any
NPT state there exists PPT bound entangled state such
that the product of the two is distillable [137]. Conse-
quently, if the NPT state were bound entangled, then
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we would have the pair of two bound entangled states
(both with their individual distillable entanglement mea-
sure equal to zero) such that their tensor product would
be distillable (i.e. having the measure strictly positive).
As already pointed out, such a scenario is an extremal
case of superadditivity: two objects containing no re-
source of a given type, if put together constitute a sin-
gle object that, surprisingly, turns out to contain some
amount of the resource. For this type of effect on the
ground of quantum channel capacities see [138].

One can show [133] that the existence of an n-copy
non-distillable state is equivalent to the existence of a
completely positive map Λ such that it is not completely
co-positive but 2-co-positive and its n-th tensor power,
Λ
⊗n

= Λ⊗⋯⊗Λ, is also 2-co-positive. Interestingly, there
is also sufficient condition for existence of NPT bound en-
tanglement expressed in the lanquage of positive maps.
If there exists a positive map Λ that is neither completely
positive, nor completely co-positive such that its tensor
power Λ

⊗n is positive for any n, (this property is called
tensor-stable positivity), then there exist NPT bound en-
tangled states that can be constructed explicitly on the
basis of this map [139].

Note that for any n there exists an n-copy non-
distillable state that is (n+1)-copy distillable – see [140].
This fact might be considered as an indication that the
present problem of existence of NPT bound entanglement
is hard.

An important practical observation being a footbridge
between the fourth and the fifth problem is contained in
the following theorem [127]: NPT nondistillable entangle-
ment exists if and only if there exist NPT nondistillable
entangled Werner states for local dimension d > 2. In
the smallest dimension, d = 2, this is not the case.

This theorem implies that the current, fourth problem
can be formulated as follows: Decide, whether there exists
an NPT Werner state which is nondistillable.

Werner states [117] constitute a one-parameter family
ρ(d, α) of density matrices of order d2 described in the
next section. These states are NPT for α ∈ [−1,− 1

d
)

and they are 1-copy nondistillable for α ∈ [− 2
d
, 1]. In

this range of the parameter α they are conjectured to be
nondistillable [133–136, 141].

Although the above theorem reduces the problem of
NTP bound entangled states to the question concerning
a single-parameter family, it is not clear, whether analy-
sis of this particular family of states provides the easiest
technical way to solve the problem. Some other subfam-
ilies of the set of NPT states were also considered in the
above context [133, 140].

B. Distillability of quantum entnaglement

Problem 5: Show that the Werner state ρ(4,−1/2)
of two ququarts, d = 4, defined in Eq. (5) below, is not
2-copy distillable.

Setup. Consider the family of Werner states defined
on the Hilbert space Hd ⊗Hd as

ρ(d, α) = 1l⊗ 1l + αV

d2 + αd
, (5)

with the general range of the parameter α ∈ [−1, 1].
The matrix V stands for the Swap operator, defined by
its matrix elements, ⟨ij∣V ∣kl⟩ = δilδjk. Let us repeat
that the above states are NPT for α ∈ [−1,− 1

d
) and our

fourth problem can be just reduced to the analysis of
their distillability in the cases of d > 2. A distinguished
state of this family, ρ(4,−1/2), appearing in the problem
considered here, is the only two-ququart Werner state
such that its partial transpose (see Eq. 4) is proportional
to a unitary matrix.

1-copy non-distillable

2-copy non-distillable

Non-distillable
(n-copy non-distillable for any n)

…
B1A

B2

B
C

PPT

Separable
B

C?

FIG. 5. A sketch of the convex set of mixed quantum states
for a d⊗ d system with d > 2, which contains the sets of sep-
arable states, a larger set of PPT states and the sets of states
with various classes of distillability. The line represents the
family of Werner states (5) and the points A, B1, B and C
correspond to states labeled by α equal to −1, − 2

d
, − 1

d
and

1, respectively. Point A represents here the mixed state equal
to the normalised projector onto the antysymmetric subspace.
Problem 4 of existence of NPT bound entanglement is equiv-
alent to the question, whether point B∞, the position of which
is stil unknown, differs from point B. The nature of the states
along the dashed-line B1B is still unclear – to solve Prob-
lem 5 one has to decide, whether in case d = 4 the unknown
point B2 is identical with B1.

The Werner states are invariant with respect to
twirling with local unitaries [117], so they are also called
U ⊗ U -invariant. It was conjectured [133–136, 141] that
the Werner states which are not 1-copy distillable are
just not-distillable, so in particular they are also 2-copy
non-distillable. The Problem 5 is visualized in Fig. 5,
and can be reduced to the question whether in the case
d = 4 the points B1 and B2 in this plot are equal. A
stronger conjecture that for Werner states 1-copy non-
distillability is equivalent to complete non-distillability,
means that B∞ = B1 in Fig. 5.

Motivation. On the physical side working on this
problem might bring a step towards a proof of existence of
NPT bound entanglement discussed in Problem 4. Note
that there is no promise for that due to the examples
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of Watrous [140], in which the corresponding nondistil-
lability property holds for n copies, but not for n + 1
copies. Yet some hope might come from the fact that
Watrous states do not have full rank – as opposed to the
above Werner states – and this particular property seems
important for their distillability. Furthermore, possible
positive answer would render the most natural distilla-
tion protocols with two-copy interactions at their first
stage. On the other side, the negative solution of the
problem would allow to construct practical entanglement
distillation scheme for remarkably noisy states.

On a mathematical side, the positive solution of the
problem would provide a very elegant completely posi-
tive map that is not completely co-positive, but it is 2-
co-positive and the tensor product of its two copies also
possesses this property. Interestingly, this question is also
equivalent to the following algebraic problem [134]: Show
that the sum of squares of the two largest singular val-
ues is bounded by 1/2 for any Kronecker (tensor) sum,
A⊕B = A⊗ 1l+ 1l⊗B, where A and B denote traceless
matrices of size 4 satisfying Tr(A†

A) + Tr(B†
B) = 1/4.

The bound equal to 1/2 has been proven [134] under the
additional assumption that A and B are normal, so they
commute with their Hermitian conjugates. Recently fur-
ther progress has been announced in a form of a theorem
stating that the bound still holds if one of the matrices
is made completely arbitrary [142].

Moreover, the explicit parameters d = 4 and α = −1/2
appearing in the problem are of special interest since they
correspond to the case of:

(i) The minimal dimension for which this very spe-
cial Werner state is 1-copy non-distillable. Namely,
the state ρ(d,−2/d) has its partial transpose pro-
portional to the dichotomic unitary operator U =

I − 2∣ψ+⟩⟨ψ+∣, where ∣ψ+⟩ denotes the maximally
entangled state defined in (3). A dichotomic uni-
tary operator by definition has eigenvalues ±1.

(ii) The unique dimension, for which the above Werner
state characterized by the parameter α = −2/d
is located just on the boundary of a 1-copy non-
distillability. For d = 4 all the states with α < −1/2
are already 1-copy distillable, which is not true for
d > 4.

The choice of the state with its partial transpose pro-
portional to the dichotomic unitary operator is addition-
ally motivated by the fact that checking its n-copy dis-
tillability seems to be easier than in the general case.
In particular, the property of proportionality to the di-
chotomic unitary operation is preserved with respect to
taking the tensor product.

C. Further perspectives II

Solution of the fifth problem would likely provide us
some new insight into general properties of the Kronecker

sum of matrices, A ⊕ B = A ⊗ 1l + 1l ⊗ B, relevant from
the point of view of quantum theory and already studied
in general matrix analysis [143]. Problem 4 seems to be
rather complex, so its solution may involve some novel
techniques concerning tensor products of several matri-
ces. Its positive solution would likely stimulate research
on an important question relevant for quantum commu-
nication, namely, whether all NPT entangled states rep-
resent quantum privacy that may be distilled to the so-
called private bit states – see [144]. If the answer were
positive, the practical question would be, whether such
a distillation procedure can be achieved in the scheme
called ‘one-way classical communication’, in which one
party, say Alice, communicates classical bits to Bob, and
not vice versa.

IV. CONCLUDING REMARKS

The goal of this article and the competition announced
is to stimulate further reasearch on interesting mathe-
matical problems directly related to quantum informa-
tion applications. Each problem described above has in
a way been associated to a single simple equation, which
played a profound role in the development of the the-
ory of quantum information. Furthermore, each problem
is illustated with a single figure, aimed to visualize the
question posed.

The problems concerning the discrete Hilbert space,
related to deep algebraic and geometric properties of the
set of quantum states, are also linked to fundamental
problems from various branches of mathematics ranging
from group theory to number theory. Solving some of
them will impact a novel emerging field of ‘quantum com-
binatorics’ – the research on existence and enumeration
of various constellations of quantum states, which satisfy
certain conditions of balance and symmetry.

Results in the outlined directions, relevant to our un-
derstanding of foundations of quantum theory, can be
useful for the development of quantum information pro-
cessing. Furthermore, some measurement schemes and
particular constellations of quantum states can influence
the computer designed quantum experiments [145], which
may allow one to cope with a huge number of possible
configurations which ‘explodes combinatorically’. On the
other hand, it is also thinkable that the future results
of new physical experiments designed in this way could
bring hints concerning some of the theoretical problems
discussed in this work.

Possible solutions of problems devoted to distillability
of quantum entanglement definitely would enrich our un-
derstanding of the nature of the tensor product – one of
the key ingredients of quantum advantage in information
processing. This knowledge might be relevant for devel-
opment of secure quantum communication in quantum
networks. For instance NPT bound entanglement can
lead to private bits that will allow to go beyond limita-
tions known in quantum repeaters for PPT states with
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quantum security – see [146]. Independently, the solution
will shed a new light on important structures known in
linear matrix algebra.

Finding a correct answer to any of the five problems
presented above will be rewarded by the Golden KCIK
Award5 established by the National Quantum Informa-
tion Centre (KCIK) in Poland. Each year up to two
prizes can be awarded [147]. The Competition will be
closed if all five problems are solved. Then, as always
happens, new problems will come into play...
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