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Motivation: NISQ computing

® Variational quantum algorithms:' quantum speedups on near-term quantum computers

® Estimate energies of quantum many-body Hamiltonians (e.g. of molecules)
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Figure: Variational quantum algorithm for energy estimation with classical optimisation 2

® The Hamiltonian, to be measured on a quantum computer, can be expressed as
H=_ApP
PEP,

where P, = {P=Q7_ P | e {1,X,Y,Z} }and A\p €R

® Requires measuring non-commuting Pauli strings, i.e., tr [Hp] = >~ pcp, Aptr [Pp]

K. Bharti et al, Rev. Mod. Phys. 94 015004 (2022).
2B. Bauer et al, Chem. Rev. 120, 12685 (2020).



Existing strategies

Estimating the expectation value of

H=">ApP

PEP,

Two main approaches
® Grouping observables into compatible sets (maps to minimum clique cover problem?®)

H=XMXQX+XQL4+MZQY+MYRZ+ A1V

® (Classical shadows *
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Figure: A classical representation of the state is built using randomised Pauli or Clifford measurements
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(Fig. reproduced from Ref. 4)

Our approach: Joint measurability

3v, Verteletskyi, T.-C. Yen, and A. F. Izmaylov, J. Chem. Phys. 152, 124114 (2020).
4H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).



Joint measurability

® APOVM M is a collection of PSD operators M(/) such that >, M(i) = 1

Definition
Two POVMs A(i) and B(j) are jointly measurable if they can be obtained from a POVM F(\)
via a stochastic transformation (classical post-processing D(.|., A)),

A(i) = D(ilA, \)F(A) and B(j) =Y D(j|B, \)F())
A A

where 0 < D(i|A,X) < Tand >, D(i|A, X)) = 1.

D(i\A,/\)_
p D = i D(ﬂB»)E-

® Projective measurements: joint measurability <= commutativity

—

® For POVMs, joint measurability # commutativity
® Non-commuting observables can be measured simultaneously by adding noise




Joint measurability of Pauli observables
® Consider the three non-commuting (qubit) Pauli observables X, Y and Z.
® Their noisy (unsharp) versions
~ 1 ~ 1 ~ 1
Mx(£) = E(]l +7*X), My(x)= E(Jl £77Y), Mz(£)= E(Jl +1°Z)
are jointly measurable if > and only if © (%)% + (0V)2 + (7)? < 1.
Joint measurement
A parent POVM G is given by
1
Gy, 2) = c(L+xn' X+ yn'Y +21°2Z),

with outcomes x, y,z € {£1}.

o Zz,y G(x,y,z) = %Zy’z(]l +x*X+yn'Y +zi)°Z) = %(]1 + xn*X) = M)((X)

5P. Busch, Phys. Rev. D 33, 2253 (1986).
oT. Brougham and E. Andersson, Phys. Rev. A 76, 052313 (2007).



Joint measurability of two-qubit Paulis

Two-qubit parent POVM

F(xi,...,22) = Gi(x1,y1,21) ® Ga(x2, y2, 22)

1
= ?Ul + XX+ yiY + 25 Z) @ (1 + xami X + yanl Y + 215 Z)

y

Classical post-processing for X @ Y

Measure X ® Y, with outcome s = x; -y and noise 7y - 772y,
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Joint measurability of Pauli strings

Joint measurement of Pauli strings

A locally biased joint measurement on n-qubits is given by
n
F(x1,- -, %n) := @) Gilxis yis 21) ,
i=1

where Gi(xi, yi, zi) = 3(L + xig! X + ym! Y + zm? Z) and x; = (x;, yi, zi) .

® Fis a joint measurement of all noisy (unsharp) Pauli strings
~ 1
Mp(sp) = (1 + spnpP),

where sp € {1} is the product of local outcomes and 7p the product of local noises

® For example,if P= X ® 1 ® Z, then sp = xyz3 and np = nynj.



Implementing the joint measurement on a quantum computer

Projective simulability

A POVM is projective simulable if it can be implemented via randomisation of projective
measurements & classical post-processing?

“M. Oszmaniec, L. Guerini, P. Wittek, and A. Acin, Phys. Rev. Lett. 119, 190501 (2017).

® POVM G(x,y,z) = %(]1 + %(XX + yY + zZ)), with uniform noise, is simulated by a
uniform mixture of four projective measurements onto opposite vertices of a cube

Pi(+) = %(Jl + %m -o)

Pi(=) = %(11 ~ o)

V3
withe; = (1,1,1),e, = (1,1, —1),e3 = (1, —1,1),es = (—1,1,1),and o = (X, Y, Z)
® Implementing G corresponds to measuring P; with probability p(j) = %

® For example, measuring P1 and obtaining outcome 41 corresponds to (1,1, 1)



Estimating Hamiltonians via joint measurability



Estimating Pauli strings

Estimate, simultaneously, tr [Pp] for all P = ®7_, P;, where P; € {1, X, Y, Z}

Randomized
measurement,

Quantum state
Classical post-processing
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1. Perform the joint measurement G on each qubit system, obtaining an outcome tuple
(xi, i, zi) for every qubit, where x;, yi, z € {£1}.

2. The outcome of the noisy version of P = ®_, P; is the product of local outcomes p;
(equal to either x;, y; or z; corresponding to P;).

3. An unbiased estimator P of tr [Pp] is obtained by dividing []; pi by the product of the
local noises.



Estimating Hamiltonians

Unbiased estimator of tr [Hp]

For an n-qubit Hamiltonian H = 3~ , ApP, with A\p € R, a single shot estimator is given by

A= Z l)\Ps,p

p e

where sp is the outcome associated with the unsharp measurement MP(SP) = %(Il + npspP)
v

® [iis unbiased, i.e., E[H] = tr [Hp]
® The number of copies of p such that Prob(|H — tr[Hp] | < €) > 1— 4, is

o (Iog( /9 1 [H])

with Var[H] = E[] — (tr [Hp])2, and E[A?] = 3, oep, %E[SPSQ]



Variance of estimator

* Elspsa] = 3, 54 tT [MP,Q(SPvSQ)P] spsq

® If P and Q qubit-wise commute, then E[spsq] = 7;;‘;(72 tr [PQp]

® Otherwise, E[spsq] = 0

Variance of H
The variance of the estimator H is given by

varlf = 3 Qi fpag] — (i el
r.qep, P71Q

where f(P, Q) = [1iL, fi(P, Q), and

1 if'P,':]lOI’Q,':]IOI’P,':Q,'7
0 otherwise.

f,‘(P,Q):{

Optimisation

® Noise parameters 1pq, 71p and 1q of parent POVM can be optimised to minimize Var[]



Connections to classical shadows



Classical shadows
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® Randomised measurement protocol’, sampling U € U, such that

Kenun
wopuey

Quantum System

p — UpUT — |b)(b| — UT|b)(b|U

® |n expectation, the protocol defines a shadow channel

M:pr—sEueu > p(blp)UT|b)(b|U
be{o,1}n

® Applying the inverse channel M~ gives a classical snapshot

p=MT(UT|b)(b|V)

® jis not necessarily positive semidefinite but

E[p] = M7 E[UT[b)(E|U]) = M (M(p)) = p

TH.AY. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).



Estimating Hamiltonians with classical shadows
® The classical shadow for random Pauli measurements (i.e. X, Y and Z on each qubit), is

p =@, (3U |b) (bi| U — 1)

® An arbitrary set of m observables Oy, ..., Op, can be estimated simultaneously via
Ash ~ .
Of:tr[ij} j=1,....,m

2
shadow

with variance bounded by the shadow norm, Var[0*] < HOJH
® For Hamiltonian H = )~ , ApP, estimator of tr [Hp] is

Hh =" Xptr[Pp]
P
® Locally biased classical shadow®: X, Y and Z are sampled from a (biased) probability
distribution p(P;|i) where P; € {X, Y, Z} for each qubit i

Observation 1

The joint measurability (JM) and locally biased classical shadow (LBCS) estimation protocols
(for Hamiltonians H = ), ApP) have the same sample complexity bounds

8C. Hadfield, S. Bravyi, R. Raymond, and A. Mezzacapo, Commun. Math. Phys. 391,951 (2022).



From joint measurements to classical shadows

Observation 2

From the joint measurement F we can construct a locally biased classical shadow. Restricting
to the unbiased setting we recover a shadow with similar form to Huang et al. ¢

“H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020)

® Single shot classical approximation of the quantum state p is given by

1 - 1
~ @1+ e0) =@ (Il + 51 -l )
i=1 i=1

where e; = (xi/n¥, yi/n!, zi/n?) and ps, = 3 (1 + & - o), with & = e;/ ||ej|
e Ifnf = 77, == \/,then lleill = 3,and p™ = @7, (30, — 1)
® This has a similar form to 55 = @] (3U |bi)(bi|U; — 1)



From classical shadows to joint measurements

Observation 3

Any classical shadow defines a joint measurement and provides a sufficient condition for the
compatibility of an arbitrary set of measurements

® Protocol describes a single POVM, G(x, U) = ﬁ UT|x)(x|U, where U € U, x € {0,1}".
® Produces a snapshot jy y = (d 4+ 1)UT[x)(x|U — 1
® by, u is not necessarily positive semidefinite, but tr [py,y] = 1and E[px,u] = p
® For a set of POVMs M;(s), we can compute
q(slj, X, U) =tr [Mj(s)ﬁx,u]
which, in expectation, yields the outcome statistics of M;

® Add noise such that tr [M?(s)ﬁX,U] >0, where M;? =nM; + (1 —n)tr [Mj] 1/d

® Joint measurability of M? holds for n < d%ﬂ



Estimating in the presence of physical noise



Incorporating readout noise

Readout noise

Ideal projective measurement P affected by stochastic readout noise, i.e.,

P() = > AiP(k).
k

Modified parent POVM G, implemented via randomisation of P, may no longer be optimal

Ideal implementation

Readout noise
= ® Which POVMs are noisy projective simulable?
i —

® What is the optimal G’ that is noisy projective simulable?



Numerics

® Evaluate Var[H] of Hamiltonian H using noisy projective simulable POVM G’
® Optimise G’ on each qubit to minimise Var[H]

® Compare with readout noise in classical shadows °'°

Joint measurability vs noisy classical shadows

Encoding / Molecule ‘ H; LiH BeH, H,O
Jordan-Wigner 1.00 0.06 0.04 0.1
Bravyi-Kitaev 0.13  0.78 0.55 0.61
Parity 0.38 0.02  0.009 0.02

Table: Upper bounds on the variance of the estimators of Hamiltonians in the presence of readout noise,
normalised by classical shadows

® Optimised strategies allow us to obtain a reduction of the variance upper bound by as
much as a factor of = 100

9s. Chen, W. Yu, P. Zeng, and S. T. Flammia, PRX Quantum 2, 030348 (2021).
D, E. Koh and S. Grewal, Quantum 6, 776 (2022).



Concluding remarks

® Are there deeper fundamental connections between shadows and joint measurements?

® Can we gain further insight into the efficiency of computational tasks from the limits of
joint measurability?

® Can we construct optimal joint measurements from the performance limits of classical
shadows?

® |s joint measurability a useful strategy in other quantum computing applications?

® Motivates further studies of incompatibility, e.g. characterisation of optimal joint
measurements which are projective (or noisy projective) simulable

® Future work: Joint measurability strategies in fermionic systems
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