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Motivation: NISQ computing

• Variational quantum algorithms:1 quantum speedups on near-term quantum computers
• Estimate energies of quantum many-body Hamiltonians (e.g. of molecules)

Figure: Variational quantum algorithm for energy estimation with classical optimisation 2

• The Hamiltonian, to be measured on a quantum computer, can be expressed as

H =
∑
P∈Pn

λPP

where Pn = {P = ⊗n
i=1Pi | Pi ∈ {1, X ,Y ,Z} } and λP ∈ R

• Requires measuring non-commuting Pauli strings, i.e., tr [Hρ] =
∑

P∈Pn λPtr [Pρ]

1K. Bharti et al, Rev. Mod. Phys. 94 015004 (2022).
2B. Bauer et al, Chem. Rev. 120, 12685 (2020).



Existing strategies

Estimating the expectation value of

H =
∑
P∈Pn

λPP

Two main approaches
• Grouping observables into compatible sets (maps to minimum clique cover problem3)

H = λ1X ⊗ X + λ2X ⊗ 1 + λ3Z ⊗ Y + λ4Y ⊗ Z + λ51⊗ Y

• Classical shadows 4

Figure: A classical representation of the state is built using randomised Pauli or Cli�ord measurements
(Fig. reproduced from Ref. 4)

Our approach: Joint measurability

3V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, J. Chem. Phys. 152, 124114 (2020).
4H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).



Joint measurability

• A POVM M is a collection of PSD operators M(i) such that
∑

i M(i) = 1

Definition
Two POVMs A(i) and B(j) are jointly measurable if they can be obtained from a POVM F(λ)
via a stochastic transformation (classical post-processing D(.|., λ)),

A(i) =
∑
λ

D(i|A, λ)F(λ) and B(j) =
∑
λ

D(j|B, λ)F(λ)

where 0 ≤ D(i|A, λ) ≤ 1 and
∑

i D(i|A, λ) = 1.

• Projective measurements: joint measurability ⇐⇒ commutativity
• For POVMs, joint measurability ; commutativity
• Non-commuting observables can be measured simultaneously by adding noise



Joint measurability of Pauli observables

• Consider the three non-commuting (qubit) Pauli observables X ,Y and Z .
• Their noisy (unsharp) versions

M̃X (±) =
1
2

(1± ηxX) , M̃Y (±) =
1
2

(1± ηyY) , M̃Z (±) =
1
2

(1± ηzZ)

are jointly measurable if 5 and only if 6 (ηx)2 + (ηy)2 + (ηz)2 ≤ 1 .

Joint measurement
A parent POVM G is given by

G(x, y, z) =
1
8

(1 + xηxX + yηyY + zηzZ) ,

with outcomes x, y, z ∈ {±1} .

• ∑
z,y G(x, y, z) = 1

8

∑
y,z(1 + xηxX + yηyY + zηzZ) = 1

2 (1 + xηxX) = M̃X (x)

5P. Busch, Phys. Rev. D 33, 2253 (1986).
6T. Brougham and E. Andersson, Phys. Rev. A 76, 052313 (2007).



Joint measurability of two-qubit Paulis

Two-qubit parent POVM

F(x1, . . . , z2) = G1(x1, y1, z1)⊗ G2(x2, y2, z2)

=
1
82

(1 + x1η
x
1X + y1η

y
1Y + z1η

z
1Z)⊗ (1 + x2η

x
2X + y2η

y
2Y + z2η

z
2Z)

Classical post-processing for X ⊗ Y

Measure X ⊗ Y , with outcome s = x1 · y2 and noise ηx1 · η
y
2 ,



Joint measurability of Pauli strings

Joint measurement of Pauli strings
A locally biased joint measurement on n-qubits is given by

F(x1, . . . , xn) :=
n⊗

i=1

Gi(xi , yi , zi) ,

where Gi(xi , yi , zi) = 1
8 (1 + xiηxi X + yiη

y
i Y + ziηzi Z) and xi = (xi , yi , zi) .

• F is a joint measurement of all noisy (unsharp) Pauli strings

M̃P(sP) =
1
2

(1 + sPηPP) ,

where sP ∈ {±1} is the product of local outcomes and ηP the product of local noises
• For example, if P = X ⊗ 1⊗ Z , then sP = x1z3 and ηP = ηx1η

z
3 .



Implementing the joint measurement on a quantum computer

Projective simulability
A POVM is projective simulable if it can be implemented via randomisation of projective
measurements & classical post-processinga

aM. Oszmaniec, L. Guerini, P. Wi�ek, and A. Acı́n, Phys. Rev. Le�. 119, 190501 (2017).

• POVM G(x, y, z) = 1
8 (1 + 1√

3
(xX + yY + zZ)), with uniform noise, is simulated by a

uniform mixture of four projective measurements onto opposite vertices of a cube

with e1 = (1, 1, 1), e2 = (1, 1,−1), e3 = (1,−1, 1), e4 = (−1, 1, 1), and σ = (X ,Y ,Z)

• Implementing G corresponds to measuring Pj with probability p(j) = 1
4

• For example, measuring P1 and obtaining outcome +1 corresponds to (1, 1, 1)



Estimating Hamiltonians via joint measurability



Estimating Pauli strings

Estimate, simultaneously, tr [Pρ] for all P = ⊗n
i=1Pi , where Pi ∈ {1, X ,Y ,Z}

1. Perform the joint measurement G on each qubit system, obtaining an outcome tuple
(xi , yi , zi) for every qubit, where xi , yi , zi ∈ {±1}.

2. The outcome of the noisy version of P = ⊗n
i=1Pi is the product of local outcomes pi

(equal to either xi , yi or zi corresponding to Pi ).

3. An unbiased estimator P̂ of tr [Pρ] is obtained by dividing
∏

i pi by the product of the
local noises.



Estimating Hamiltonians

Unbiased estimator of tr [Hρ]

For an n-qubit Hamiltonian H =
∑

P λPP , with λP ∈ R, a single shot estimator is given by

Ĥ =
∑
P

1
ηP
λP sP

where sP is the outcome associated with the unsharp measurement M̃P(sP) = 1
2 (1 + ηP sPP)

• Ĥ is unbiased, i.e., E[Ĥ] = tr [Hρ]

• The number of copies of ρ such that Prob(|Ĥ − tr [Hρ] | < ε) > 1− δ, is

N = O
(

log(1/δ)

ε2
Var[Ĥ]

)
,

with Var[Ĥ] = E[Ĥ2]− (tr [Hρ])2, and E[Ĥ2] =
∑

P,Q∈Pn
λPλQ
ηPηQ

E[sP sQ ]



Variance of estimator

• E[sP sQ ] =
∑

sP ,sQ
tr
[

M̃P,Q(sP , sQ)ρ
]
sP sQ

• If P and Q qubit-wise commute, then E[sP sQ ] =
ηPQ
ηPηQ

tr [PQρ]

• Otherwise, E[sP sQ ] = 0

Variance of Ĥ

The variance of the estimator Ĥ is given by

Var[Ĥ] =
∑

P,Q∈Pn

ηPQ f (P,Q)

ηPηQ
λPλQtr [PQρ]− (tr [Hρ])2 ,

where f (P,Q) =
∏n

i=1 fi(P,Q), and

fi(P,Q) =

{
1 if Pi = 1 or Qi = 1 or Pi = Qi ,

0 otherwise .

Optimisation
• Noise parameters ηPQ , ηP and ηQ of parent POVM can be optimised to minimize Var[Ĥ]



Connections to classical shadows



Classical shadows

• Randomised measurement protocol7, sampling U ∈ U , such that

ρ −→ UρU† −→ |b〉〈b| −→ U†|b〉〈b|U

• In expectation, the protocol defines a shadow channel

M : ρ 7−→ EU∈U
∑

b∈{0,1}n
p(b|ρ)U†|b〉〈b|U

• Applying the inverse channelM−1 gives a classical snapshot

ρ̂ =M−1(U†|b〉〈b|U)

• ρ̂ is not necessarily positive semidefinite but

E[ρ̂] =M−1(E[U†|b〉〈b|U]) =M−1(M(ρ)) = ρ

7H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).



Estimating Hamiltonians with classical shadows

• The classical shadow for random Pauli measurements (i.e. X , Y and Z on each qubit), is

ρ̂ = ⊗n
i=1(3U†i |bi〉〈bi |Ui − 1)

• An arbitrary set of m observables O1, . . . ,Om, can be estimated simultaneously via

Ôsh
j = tr

[
Oj ρ̂
]

j = 1, . . . ,m

with variance bounded by the shadow norm, Var[Ôsh] ≤
∥∥Oj
∥∥2

shadow
• For Hamiltonian H =

∑
P λPP , estimator of tr [Hρ] is

Ĥsh =
∑
P

λPtr [P ρ̂]

• Locally biased classical shadow8: X , Y and Z are sampled from a (biased) probability
distribution p(Pi |i) where Pi ∈ {X ,Y ,Z} for each qubit i

Observation 1
The joint measurability (JM) and locally biased classical shadow (LBCS) estimation protocols
(for Hamiltonians H =

∑
P λPP) have the same sample complexity bounds

8C. Hadfield, S. Bravyi, R. Raymond, and A. Mezzacapo, Commun. Math. Phys. 391, 951 (2022).



From joint measurements to classical shadows

Observation 2
From the joint measurement F we can construct a locally biased classical shadow. Restricting
to the unbiased se�ing we recover a shadow with similar form to Huang et al. a

aH.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020)

• Single shot classical approximation of the quantum state ρ is given by

ρ̂ JM =
n⊗

i=1

1
2

(1 + ei · σ) =
n⊗

i=1

(
‖ei‖ρẽi +

1

2
(1− ‖ei‖)

)
,

where ei = (xi/ηxi , yi/η
y
i , zi/η

z
i ) and ρẽi = 1

2 (1 + ẽi · σ), with ẽi = ei/ ‖ei‖
• If ηxi = η

y
i = ηzi = 1√

3
, then ‖ei‖ = 3, and ρ̂ JM =

⊗n
i=1(3ρẽi − 1)

• This has a similar form to ρ̂ CS =
⊗n

i=1(3U†i |bi〉〈bi |Ui − 1)



From classical shadows to joint measurements

Observation 3
Any classical shadow defines a joint measurement and provides a su�icient condition for the

compatibility of an arbitrary set of measurements

• Protocol describes a single POVM, G(x,U) = 1
|U|U

†|x〉〈x|U, where U ∈ U , x ∈ {0, 1}n.

• Produces a snapshot ρ̂x,U = (d + 1)U†|x〉〈x|U − 1

• ρ̂x,U is not necessarily positive semidefinite, but tr [ρ̂x,U ] = 1 and E[ρ̂x,U ] = ρ

• For a set of POVMs Mj(s), we can compute

q(s|j, x,U) = tr
[
Mj(s)ρ̂x,U

]
which, in expectation, yields the outcome statistics of Mj

• Add noise such that tr
[

Mη
j (s)ρ̂x,U

]
≥ 0 , where Mη

j = ηMj + (1− η)tr
[
Mj
]
1/d

• Joint measurability of Mη
j holds for η ≤ 1

d+1



Estimating in the presence of physical noise



Incorporating readout noise

Readout noise
Ideal projective measurement P a�ected by stochastic readout noise, i.e.,

P̃(j) =
∑
k

ΛjkP(k) .

Modified parent POVM G̃, implemented via randomisation of P̃, may no longer be optimal



Numerics

• Evaluate Var[Ĥ] of Hamiltonian H using noisy projective simulable POVM G′

• Optimise G′ on each qubit to minimise Var[Ĥ]

• Compare with readout noise in classical shadows 9,10

Joint measurability vs noisy classical shadows

Encoding / Molecule H2 LiH BeH2 H2O
Jordan-Wigner 1.00 0.06 0.04 0.1
Bravyi-Kitaev 0.13 0.78 0.55 0.61

Parity 0.38 0.02 0.009 0.02

Table: Upper bounds on the variance of the estimators of Hamiltonians in the presence of readout noise,
normalised by classical shadows

• Optimised strategies allow us to obtain a reduction of the variance upper bound by as
much as a factor of ≈ 100

9S. Chen, W. Yu, P. Zeng, and S. T. Flammia, PRX�antum 2, 030348 (2021).
10D. E. Koh and S. Grewal, �antum 6, 776 (2022).



Concluding remarks

• Are there deeper fundamental connections between shadows and joint measurements?
• Can we gain further insight into the e�iciency of computational tasks from the limits of

joint measurability?
• Can we construct optimal joint measurements from the performance limits of classical

shadows?
• Is joint measurability a useful strategy in other quantum computing applications?
• Motivates further studies of incompatibility, e.g. characterisation of optimal joint

measurements which are projective (or noisy projective) simulable
• Future work: Joint measurability strategies in fermionic systems
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