The Operational Choi-Jamiolkowski Isomorphism¹

Emily Adlam

¹Rotman Institute The University of Western Ontario

February 2023

¹E. Adlam. "The Operational Choi–Jamiołkowski Isomorphism". In: Entropy 22.1063 (2020): 🕨 🗧 🔊 🤇 🔿

Plan

Motivation

- Leifer
- Operational formulation of the CJ Isomorphism
- Strong monogamy of correlations + Bell nonlocality = No-broadcasting/cloning
- No-signaling + Bell nonlocality = Preparation Contextuality

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Information Causality = Fine-grained uncertainty relations

Motivation

- What the isomorphism actually tells us: in quantum mechanics, the set of possible multipartite correlations exhibited by entangled states is equivalent to the set of possible temporal correlations exhibited by sequences of measurements on a single system over time.
- Ontic equivalence principle: phenomena which exhibit very similar statistics should be explained by the same kind of underlying mechanism.

Leifer Reformulation²

- ► Ensemble preparation: specified by a probability distribution p(i): i ∈ {1, 2...N} and a set of preparations {Q_i: i ∈ {1, 2...N}}: a procedure in which an observer draws a number i from {1, 2...N} with probability distribution p(i), and then performs the corresponding preparation Q_i.
- ▶ When the operational theory in question is quantum mechanics, every possible ensemble preparation can be described by a POVM $\{M_i\}$ and density operator ρ , where $p(i) = Tr(\rho M_i)$ and P_i is a preparation which produces the quantum state $\rho_i = \frac{\sqrt{\rho}M_i \sqrt{\rho}}{Tr(M_i \rho)}$
- For any bipartite state ρ_{AB}^{ϵ} , there exists a CPTP map ϵ and a reduced state $\rho_A = Tr_B(\rho_{AB}^{\epsilon})$ such that given any two POVMs *M* and *O*, if M^T is obtained by taking the transpose of all the measurement operators in *M* with respect to some fixed basis, then when we perform the ensemble preparation described by the POVM M^T and the density operator ρ_A , then evolve the state according to ϵ , then perform the measurement *O*, the probability that state ρ_i is prepared and then the measurement *M* has outcome *j* is the same as the joint probability of obtaining outcomes M_i and O_j when the POVM *M* is performed on system *A* and the POVM *O* is performed on system *B* for a bipartite system *AB* in the state ρ_{AB}^{ϵ} .

Conversely, for any pair of a CPTP map and state ρ there exists a bipartite state ρ_{AB}^{ϵ} such that the same conditions hold, so we have defined an isomorphism between bipartite states and pairs (ρ_A, ϵ^r) , where ϵ^r denotes the restriction of the CPTP map ϵ to the support of ρ_A .

²M. S. Leifer. "Conditional Density Operators and the Subjectivity of Quantum Operations". In: Foundations of Probability and Physics - 4. Ed. by G. Adenier, C. Fuchs, and A. Y. Khrennikov. Vol. 889. American Institute of Physics Conference Series. Feb. 2007, pp. 172–186. DOI: 10.1063/1.2713456. eprint: quant-ph/quant-ph/0611233.

Operational CJ Isomorphism

For any joint preparation P_{123...n} on a set of systems S, S₂,...S_n, there exists a set of channels T₂, T₃,...T_n which may simultaneously be applied to the system S, such that for any set of measurements M, M₂, ... M_n which may be performed on S, S₂,...S_n, there exists an ensemble preparation P for the system S such that the distribution p_{P123...n};M,M₂...M_n is the same as the distribution p_{P172...T_n;M₂...M_n.}

Conversely, for any set of channels T_2 , T_3 , ... T_n which may simultaneously be applied to the system S to produce a set of systems S_2 , ... S_n , there exists a joint preparation $P_{123...n}$ for systems S, S_2 , $S_3... S_n$ such that for any ensemble preparation P which may be performed for system S and any set of measurements M_2 , M_3 , ... M_n which may be performed on the products S_2 , ... S_n , there exists a measurement M on S such that the distribution $p_{P_{123...n};M_2...M_n}$ is the same as the distribution $p_{P_1T_2...T_n;M_2...M_n}$.

Operational CJ Isomorphism

Strong monogamy of correlations + Bell nonlocality = No-broadcasting/cloning

- No broad-casting: there is no universal broadcasting map in quantum mechanics
 - Operational state: Given two preparation procedures P_a, P_b which appear in an operational theory, these procedures produce the same operational state iff when a system is prepared using one of these procedures, there is no subsequent measurement or sequence of measurements which can give us any information about whether the system was prepared using P_a or P_b.
 - Operational no broad-casting: there is no map which broadcasts any set of operational states.
- Monogamy: the amount of entanglement a quantum system has with one system limits the amount of entanglement it can share with other systems
 - Measure correlations in terms of the CHSH quantity:

$$\mathscr{B}_{AB} := \langle AB \rangle_{P_{AB}, M^0_A, M^0_B} + \langle AB \rangle_{P_{AB}, M^0_A, M^1_B} + \langle AB \rangle_{P_{AB}, M^1_A, M^0_B} - \langle AB \rangle_{P_{AB}, M^1_A, M^1_B}$$

Strong monogamy of correlations³: An operational theory obeys strong monogamy of correlations iff for any joint preparation of three systems S_A, S_B, S_C, for any choice of measurements M⁰_A, M¹_A on S_A, any choice of measurements M⁰_B, M¹_B on S_B, and any choice of measurements M⁰_C, M¹_C on S_C, the associated CHSH quantities satisfy:

$$\mathscr{B}_{AB}(P_{ABC}, M^{0}_{A}, M^{1}_{A}, M^{0}_{B}, M^{1}_{B})^{2} + \mathscr{B}_{BC}(P_{ABC}, M^{0}_{B}, M^{1}_{B}, M^{0}_{C}, M^{1}_{C})^{2} \leq 8$$

Bell non-locality: some CHSH quantity greater than two

³B. Toner and F. Verstraete. "Monogamy of Bell correlations and Tsirelson's bound"? In: epint

Strong monogamy of correlations + Bell nonlocality = No-broadcasting/cloning

In an operational theory which obeys the operational Choi-Jamiolkowksi isomorphism and exhibits Bell nonlocality, the existence of a universal broadcasting map implies that the theory violates strong monogamy of correlations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

No-signaling + Bell nonlocality = Preparation Contextuality

- Ontological model: a space Λ of ontic states λ , a set of probability distributions $\mu^P(\lambda)$ giving the probability that the system ends up in the state λ when we perform the preparation procedure P, a set of response functions $\xi_{M,X}(\lambda)$ giving the probability that we obtain outcome M^X when we perform measurement M on a system whose ontic state is λ , and a set of column-stochastic matrices T^O representing the way in which the ontic state is transformed when some operation O is applied to the system.
- Preparation contextuality: an operational theory is *preparation contextual* iff it is not possible to represent the theory by a valid ontological model in which every operational state is represented by a unique probability distribution over ontic states⁴.
- Operational no-signalling principle: In a process involving a set of non-communicating devices $\{D_i\}: i \in \{1 \dots N\}$ such that device D_i accepts an input variable N_i and produces an output variable O_i , let J be any subset of $\{1 \dots N\}$, let O_J be the set of variables $\{O_j: j \in J\}$, let N_J be the set of variables $\{N_i: j \in J\}$; then if the inputs $\{N_i\}$ are uncorrelated, the outcomes satisfy $p(O_J|N_1, \dots, N_n) = p(O_J|N_J)$.

No-signaling + Bell nonlocality = Preparation Contextuality

Given an operational theory which obeys the operational Choi-Jamiołkowski isomorphism and the no-signalling principle, if the theory is preparation non-contextual, it does not exhibit Bell nonlocality.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Information Causality = Fine-grained uncertainty relations

- A sub-theory (𝒫,𝒜,𝒜,𝒜,𝑌) of an operational theory is d-dimensional iff d is the smallest number such that there exists a set of d² − 1 continuous parameters in [0, 1] with the following properties:
 - 1. Specifying the values of all $d^2 1$ parameters for any preparation $P \in \mathcal{P}$ fully determines the probabilities $p(M^{\times}|P)$ for every outcome M^{\times} of every measurement M in \mathcal{M} .
 - 2. For every possible set of values of the $d^2 1$ parameters, there exists a preparation $P \in \mathcal{P}$ described by those parameters.
- ▶ In some subtheory $(\mathcal{P}, \mathcal{M}, \mathcal{T}, p)$ of an operational theory, two measurements $M_1, M_2 \in \mathcal{M}$ are **orthogonal** iff given an arbitrary unknown preparation P, the set of probabilities $\{p(M_1^{\times}|P)\}$ and $\{p(M_2^{\times}|P)\}$ are independent.
- ▶ Information Causality⁵: if Alice and Bob pre-share a set of devices which exhibit nonlocal correlations, and Alice receives a bit string $N_0N_1...N_n$ and sends Bob a classical message M of m bits, and Bob performs a measurement with some setting k and obtains outcome O, then $\sum_r I(MO : N_r|k = r) \le m$

⁵M. Pawlowski et al. "Information causality as a physical principle". In: *Nature* 461 (Oct. 2009), pp. 1101-1104. DOI: 10.1038/nature08400. arXiv: quant-ph/0905.2292 [quant+ph] ♂ × (=) × (=) () () Information Causality = Fine-grained uncertainty relations

If an operational theory obeys the operational Choi-Jamiołkowski isomorphism and information causality, then given any subtheory (P, M, T, p) of dimension two, for any preparation P ∈ P and any pair of orthogonal measurements M₁, M₂ ∈ M, and any two outcomes M₁^m, M₂ⁿ of the measurements M₁, M₂, we must have:

$$p(M_1^m|M) + p(M_2^n|M') \le 1 + \frac{1}{\sqrt{2}}$$

Derivation inspired by Oppenheim/Wehner⁶

⁶J. Oppenheim and S. Wehner. "The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics". In: Science 330 (Nov. 2010), p. 1072. DOI: 10.1126/science.1192065. arXiv: quant+ph/1004.32507.[quant-ph].

 $< \ensuremath{\mathbb{C}}$

Questions?

<□▶ <週▶ < ≧▶ < ≧▶ = ● ○ ○ ○ ○