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INTRODUCTION

(INFORMAL)



INSPIRATION FROM CHOI-JAMIOŁKOWSKI

A lesson of the Choi–Jamiołkowski isomorphism: quantum states 
and quantum processes can be treated on the same footing.

Quantum process

(completely positive  
  trace non-increasing map)

𝒞

Quantum state

(positive semidefinite operator 
  with trace bounded by 1)

A

A

B𝒞
Φ+A B

Φ+ =
1
dA ∑

m,n

|m⟩⟨n | ⊗ |m⟩⟨n |

:= A

A

BC⟹
isomorphism

between the cone of

unnormalized states

and the cone of  
unnormalized processes



QUANTUM SUPER-PROCESSES

The isomorphism between the (cone of) quantum states  
and the (cone of) quantum processes suggests an idea of 

“quantum super-process”.


Informally: 

a quantum super-process should transform quantum processes  
                                              into quantum processes,


in a similar way as  
 
a quantum process transforms quantum states  
                                   into quantum states



TRIVIAL CHARACTERIZATION?

From the Choi–Jamiołkowski isomorphism,

it is clear that a super-process can be represented by a 

(completely) positive map.

But is that all?

Aren’t there

more conditions

that a  
super-process 

should satisfy?

Chiribella, D’Ariano, and Perinotti,  EPL 83, 30004 (2008);   
Zyczkowski, Phys. A 41, 355302-23 (2008).



NORMALIZATION

No matter how much we love the Choi–Jamiołkowski isomorphism,

we should’t be carried away: 

there still exist a difference between states and processes!  

The difference is in the normalization:

-normalized (a.k.a. deterministic) states  =  trace-1 operators

-normalized (a.k.a. deterministic) processes  =  trace-preserving maps

Hence, super-processes are not trivially characterized as ordinary 
processes acting on the Choi states:
they have a different normalization condition!

The Choi–Jamiołkowski isomorphism not an isomorphism between

the set of normalized states and the set of normalized processes. 



PLAN FOR THE (REST OF THE) TALK

• Framework of quantum supermaps

• Higher-order quantum processes and quantum causal structures

• General supermaps on subsets of quantum processes



QUANTUM SUPERMAPS



TRANSFORMATIONS OF QUANTUM CHANNELS

S

𝒞 =

Deterministic supermap [Chiribella, D’Ariano, and Perinotti,  EPL 83, 30004 (2008)] 
                                            must be linear (in the input CP map) 

                                            and send quantum channels 
                                           (deterministic quantum processes)  
                                            into quantum channels, 

                                            even when acting locally on one part of 

                                            a bipartite channel

𝒞′￼

input 

channel

output 

channel

supermap



MATHEMATICAL CHARACTERIZATION

The Choi–Jamiołkowski isomorphism offers a first characterization 

of the deterministic supermaps: 


in the Choi representation, a supermap  induces a  
completely positive map 
The supermap is deterministic if and only if the condition 

𝒮̂𝒮 : L (ℂdA ⊗ ℂdB) → L (ℂdA′￼⊗ ℂdB′￼)

𝖳𝗋B′￼[ ̂𝒮 (C)] =
IA′￼

dA′￼

∀C : 𝖳𝗋B[C] =
IA

dA

is satisfied.



CHARACTERIZATION 

Theorem [Chiribella, D’Ariano, and Perinotti,  EPL 83, 30004 (2008)]

Every deterministic supermap can be realized by a network

of quantum channels with memory:

=S
𝒞 𝒞

ℰ1 ℰ2



SUPERMAPS

OF 


HIGHER ORDER



T

S

=

NEXT NEXT LEVEL:  
MAPPING SUPERMAPS INTO CHANNELS

Deterministic “super-duper map”:  

must be linear and send deterministic supermaps into channels, 

even when acting locally on one part of a bipartite supermap

𝒞

input 

supermap

output 

channel

“super-duper map”



N-MAPS

N=1 quantum channel

N=2

N=3

S
(1)

S
(2)

S
(3)



REALIZATION OF THE DETERMINISTIC N-MAPS

Theorem [GC, D’Ariano, and Perinotti, PRA A 80, 022339 (2009)]

Any deterministic N-map can be realized by a  
sequential network of quantum channels with memory.

ℰN+1ℰNℰ2ℰ1

𝒞1 𝒞2 𝒞N−1 𝒞N

These supermaps are called “quantum combs.”  
They are all compatible with a well-defined causal order!

𝒞′￼ =



QUANTUM SUPERMAPS

WITH


INDEFINITE CAUSAL ORDER



FROM DEFINITE TO INDEFINITE CAUSAL ORDER

Question:  what is the most general way to transform 
a quantum channel into a supermap?  

S
𝒞

Equivalently: what is the most general way to transform  
a pair of channels into a channel?

(𝒮(𝒞))(𝒟)

𝒞

𝒟



CLASSICALLY: TWO COMPLEMENTARY ORDERS

• Option 1: place  before 𝒞 𝒟

ℰ1ℰ1ℰ1 ℰ2 ℰ3
𝒟𝒞

• Option 2: place  before 𝒟 𝒞

ℰ1ℰ1ℰ′￼1 ℰ′￼2 ℰ′￼3

𝒟 𝒞

In quantum theory, however, more options are in principle possible. 



takes as input the two processes                        and 

with equal inputs/outputs

THE (SIMPLIFIED) QUANTUM SWITCH

and connects them in a coherent superposition of the two 
configurations

The (simplified) quantum SWITCH is the supermap that 

𝒞 𝒟

and𝒟𝒞 𝒞𝒟

Chiribella, D’Ariano, Perinotti, Valiron, arXiv:0912.0195 
Phys. Rev. A 88, 022318 (2013)



Sij := CiDj ⊗ |0⟩⟨0 | + DjCi ⊗ |1⟩⟨1 |

[𝚂𝚆𝙸𝚃𝙲𝙷(𝒞, 𝒟)] (ρ) = ∑
i,j

SijρS†
ij

𝒞

𝒟

𝒞
𝒟

𝚂𝚆𝙸𝚃𝙲𝙷

Remark: the quantum channel  is independent 

of the choice of Kraus operators for  and  in the above equation.

𝚂𝚆𝙸𝚃𝙲𝙷(𝒞, 𝒟)
𝒞 𝒟



INCOMPATIBILITY WITH FIXED CAUSAL ORDER

𝒞1 𝒞2
𝒞3

𝒟=

for all unitary                        and 𝒞 𝒟

𝒞
𝒟

𝚂𝚆𝙸𝚃𝙲𝙷

Theorem (CDPV 2009/2013) 
It is impossible to find quantum channels  ,  , and    
such that

𝒞1 𝒞2 𝒞3

𝒞 𝒟

The impossibility of realizing a supermap as a (random mixture of)  
circuits with definite order is called causal non-separability.
Oreshkov, Costa, Brukner, Nature Communications 3, 1092 (2012)



GENERAL SUPERMAPS

ON


SUBSETS OF 

QUANTUM CHANNELS



GENERAL DEFINITION OF SUPERMAP 
Chiribella, D’Ariano, Perinotti, Valiron, Phys. Rev. A 88, 022318 (2013)

Let   and  be two subsets of (possibly multipartite)  
quantum channels.

A deterministic supermap from   to    is a linear map

that transforms channels in the extensions* of    
into channels in the extensions* of   .

𝖲AB 𝖲′￼A′￼B′￼

𝖲AB 𝖲′￼A′￼B′￼

𝖲AB
𝖲′￼A′￼B′￼

*an extension of  is a set of channels𝖲AB
ℰ

A B

C D

such that

ℰ
A B

C Dρ 𝖳𝗋

is in  for every state 𝖲AB ρ



SUPERMAPS ON PRODUCT CHANNELS 

𝒞

𝒟

Supermaps from product channels

to channels 

e.g. the quantum switch

𝒞

𝒟

Special case:  
supermaps from product channels

to numbers. 

The Choi operators of these maps

are known as process matrices.

Oreshkov, Costa, Brukner, Nature Communications 3,  
1092 (2012)

S

S



SUPERMAPS ON BISTOCHASTIC CHANNELS

Bistochastic channels =  unital trace-preserving CP maps.

They constitute a time-symmetric fragment of quantum theory.

Fi := Ci ⊗ |0⟩⟨0 | + CT
i ⊗ |1⟩⟨1 |

[𝙵𝙻𝙸𝙿(𝒞)] (ρ) = ∑
i,j

FiρF†
i

Example of supermap on bistochastic channels:

Called the “quantum time flip,”  
generates a superposition of a process and its time reversal.

The input-output direction becomes indefinite.

Chiribella and Liu, Communication Physics 5, 190 (2022)

2

and, at the same time, enable a table-top simulation of
exotic scenarios where the arrow of time between two
events could be indefinite.

II. RESULTS

Witnesses of input-output indefiniteness. We
start by developing a method for experimentally certify-
ing input-output indefiniteness. We adopt the general ap-
proach of witnesses of quantum resources [32], which in-
cludes notable examples such as entanglement witnesses
[33] and, more closely related to our work, witnesses of in-
definite causal order [34] and witnesses of causal connec-
tion [35]. A witness for a given resource is an observable
quantity that distinguishes between a resourceful setup
and all resource-less setups. For example, an entangle-
ment witness for a given entangled state is an observ-
able that has negative expectation value for that state
and non-negative expectation values for all unentangled
states. In the following, we will construct witnesses that
detect setups capable of using quantum devices in an in-
definite input-output direction.

Let us start by summarizing the notion of indefinite
direction. For many processes in nature, the role of the
inputs and outputs can be exchanged. For example, con-
sider the transmission of a quantum particle through a
magnetic field. In this case, the roles of the entry and
exit points are interchangeable, and both modes of trans-
mission give rise to well-defined evolutions for the parti-
cle. Hereafter, a quantum device with exchangeable in-
put and output ports will be called bidirectional.

A mathematical characterization of the bidirectional
devices acting on a given quantum system was provided
in [13]: a device is bidirectional if the corresponding
transformation of density matrices (both in the forward
and in the backward direction) is a bistochastic quan-
tum channel [36, 37], that is, a linear map C of the form
C(⇢) =

P
i Ci⇢C

†
i , where ⇢ is the input density matrix,

and (Ci) are square matrices satisfying the conditionsP
i C

†
iCi =

P
i CiC

†
i = I, I being the identity matrix.

If a bistochastic channel C describes the state change in
the forward direction, then the state change in the back-
ward direction is described by the bistochastic channel
⇥(C) given by ⇥(C) : ⇢ 7!

P
i ✓(Ci) ⇢ ✓(Ci)†, where the

map ⇥ is called an input-output inversion, and ✓(Ci) is
either unitarily equivalent to C

T
i , the transpose of Ci, or

unitarily equivalent to C
†
i , the adjoint of Ci. In the fol-

lowing, we will focus on the case where the input-output
inversion is unitarily equivalent to the transpose.

A bidirectional quantum device can be used in two
alternative input-output directions, giving rise either to
the transformation C (forward process) or to the transfor-
mation ⇥(C) (backward process). In addition, quantum
mechanics allows for setups that coherently control the
input-output direction, such as the setup shown in Figure
1. Mathematically, the possible setups that use a given
bidirectional device are described by higher-order maps

(a) (b)

(c)

FIG. 1: A bidirectional quantum device is a device that
can be used both in the forward direction (a) or in the
backward direction (b). More generally, bidirectional
devices can be used in an indefinite input-output
direction, resulting in a superposition of the forward
process and the backward process (c).

S that transform the input channel C into a new quantum
channel S(C), describing the overall state transformation
achieved by the setup. Such higher-order maps are known
as quantum supermaps [15, 38, 39]. In turn, a supermap
S can be described by a positive operator S, acting on the
tensor product Hilbert space HAI

⌦HAO
⌦HBI

⌦HBO
,

where HAI
(HAO

) is the Hilbert space of the input (out-
put) system of the initial channel C, while HBI

(HBO
) is

the Hilbert space of the input (output) system of the final
channel S(C) (see Methods for the details). Note that,
since the original device C transforms a given quantum
system into itself, the Hilbert spaces HAI

and HAO
have

the same dimension, hereafter denoted by dA.
A setup that uses the original device in the forward

direction corresponds to a positive operator Sfwd satisfy-
ing the conditions TrBO

[Sfwd] = IAO
⌦TrAOBO

[Sfwd]/dA
and TrAOAIBO

[Sfwd]/dA = IBI
[39]. Similarly, a setup

that uses the original device in the backward direction
corresponds to a positive operator Sbwd satisfying the
conditions TrBO

[Sbwd] = IAI
⌦ TrAIBO

[Sbwd]/dA and
TrAOAIBO

[Sbwd]/dA = IBI
. More generally, a setup that

uses the device in a randomly chosen direction will cor-
respond to an operator of the form

S = pSfwd + (1� p)Sbwd , (1)

where Sfwd and Sbwd satisfy the above conditions, and
p is a probability. In the following, we will denote
by Sdefinite the convex set of all operators of the form
(1). This set can be characterized by a finite number



OUTLOOK



TAKE HOME MESSAGES

• Quantum supermaps define a broad class of processes

    in principle compatible with quantum theory.

• Tight relation between quantum supermaps  
    and quantum casual structures.

• New directions: supermaps in bistochastic quantum theory,

                                indefinite input-output direction.


