Man-Duen Choi

choi@math.toronto.edu

Celebrating the Choi-Jamiolkowski Isomorphism

Online Event March 1-2, 2023

From
Real Meeting
At Torun in 2008

To Quantum Online in 2023

Formal Title

Celebrating the Choi-Jamiolkowski Isomorphism

Additional Sub-title

The Taming of the Shrew

Shrew = Quantum Entanglements

of Positive Semi-Definite Matrices

Who's Afraid of

Quantum Entanglements?

Tensor- product setup for the Taming of the Shrew

Consider a Hilbert space $H = H_1 \otimes H_2$.

- ➤ Some natural / simple / easy phenomena on H could be entangled in H₁ and H₂ separately.
- ➤ We wish to control the whole situation, bypassing / conquering /ignoring the entanglements.

Math Settings

- $L^2(XXY) = L^2(X) \otimes L^2(Y).$
- ❖ Often consider of finite-dimensional Hilbert spaces as Cⁿ with a positive integer n.
- Thus $C^n \otimes C^k = C^{nk}$. $M_n = \text{linear maps from } C^n \text{ to } C^n$ $M_n \otimes M_k = M_{nk} = M_n (M_k) = M_k (M_n)$.
 - --- no need to mention of anything as the universal property.
- In such an easy mathematical setting, who is afraid of quantum entanglements and local-global effects with respect to

Math Settings $M_n \otimes M_k = M_{nk}$ (with n>1, k>1)

- > { the sums of $A_j \otimes B_j$ with A_j in M_n^+ , B_j in M_k^+ } is only a proper subset of $(M_n \otimes M_k)^+ = M_{nk}^+$.
- Reason: $M_n^+ = \{ \text{ positive linear combinations of rank-1 projections } \}$
- •There are many rank-1 projections in M_{nk} which are not tensor product of rank-1 projections.
- ➤ Along this line, completely positive linear maps can go through the quantum entanglements, while positive linear maps cannot.

Quantum Entanglements provide exciting features , for positive linear maps

Structure Theory

Notation: Each linear map $\varphi: M_n \to M_k$ can be extended to a linear map

$$\varphi \otimes id_p: M_n \otimes M_p \longrightarrow M_k \otimes M_p$$
 .

Def: φ is said to be *p-positive* when $\varphi \otimes id_p$ is a positive linear map.

Def: φ is said to be *completely positive* when φ is a p-positive linear map for each positive integer p.

Structure Theory

Thm (Choi) : All p-positive linear maps from M_n to M_k are completely positive when $n \le p$ or $k \le p$.

• Nevertheless, various p provide distinct classes of *p*-positive linear maps as elaborated in the following:

Example (Choi): The linear map $\varphi: M_n \to M_n$ defined as $\varphi(A) = (n-1)(trace A)I_n - A$ is (n-1)-positive but not n-positive.

Old Theorem: (Choi, 1975) A linear map

 $\varphi: M_n \to M_k$ is completely positive

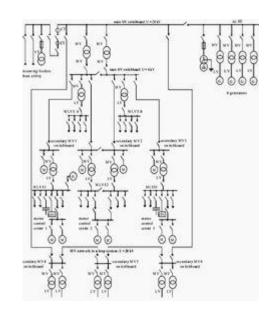
- iff $[\varphi(E_{ij})]_{i,j}$ is positive where $\{E_{ij}\}$ are the matrix units
- iff $\varphi(A) = \sum V_j^* A V_j$ for all $A \in M_n$ with n x k matrices V_i
- This 1975 paper 6 pages- has been cited in more than 2700 research papers, as of 2023 March Google Scholar
- More than 1500 citations in recent publications of Quantum Information.

CIRCUIT THEORY

Each transformer defines a

positive linear map $A \rightarrow V^*AV$.

Thus several transformers in series define a completely positive linear map.



• Main concern in circuit theory: General linear maps of mathematical expressions in terms of $[\varphi(E_{ij})]_{i,j}$ are not implementable.

Classical computer vs Quantum computer

A classical computers produces 0-1 sequences while a quantum computers produces psd matrices. Thus only completely positive maps are usable to connect quantum computers.

The Old Theorem (Choi 1975) revisited

Let $\varphi: M_n \to M_k$ be a linear map. TFAE:

- (1) φ is p-positive for all positive integer p.
- (2) $[\varphi(E_{ij})]_{i,j}$ is positive
- (3) $\varphi(A) = \Sigma V_j^* A V_j$ for all $A \in M_n$ with n x k matrices V_j
- (1) means to be the hardest nature to conquer all incredible quantum entanglements in $(M_n \otimes M_p)^+$ of various p.
 - (2) is intended for the simplest mathematical expression of a general linear map.
 - (3) turns to be the only possible connection in circuit theory.
- ❖ Stinespring Theorem (1955) covers the case (1) ⇔ (3).
- ❖ Theorem1975 says much about $(2) \Leftrightarrow (3)$ and $(2) \Leftrightarrow (1)$, which is most needed in theory of quantum information.

Taming of Shrews

- NO way to describe so many incredible entanglements in $(M_n \otimes M_p)^+$ of various p.
- The most outstanding $T = \Sigma E_{ii} \otimes E_{ii} \in (M_n \otimes M_n)^+$, is a well behaved entanglement which serves as the representative for ALL wild entanglements.

> THEOREM says that to tame ALL shrews (= entanglements) is equivalent to tame a single LOVELY shrew (without worrying how nasty/dirty/undisciplined of other shrews).

of the **LOVELY** Shrew

Example
$$n = 3$$
, $T = \sum E_{ij} \otimes E_{ij} \in (M_3 \otimes M_3)^+ = M_9^+$

❖ T is the NATURAL assemblage of matrix units

➤ Indeed, $T^2 = nT$, so $\frac{1}{n}T$ is a rank-1 projection, but T serves as the best witness to test all completely positive linear maps $M_3 \rightarrow M_3$.

Why Not Down to n=2?

> The simplest example of quantum entanglement is

$$\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} & \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \\
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix} & \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}$$

as a positive 4 x 4 matrix, but not of the form as the sum of $A_j \otimes B_j$ with A_j in M_2^+ and B_j in M_2^+ .

Purpose: Wish to classify all linear maps

 $\varphi: M_2 \to M_2$ by means of the 4 x 4 Choi Matrix $C\varphi$

$$\begin{bmatrix} \varphi(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) & \varphi(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) \\ \varphi(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}) & \varphi(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}) \end{bmatrix}$$

Challenge: What sort of non-commutative geometry could be hidden/shown in the 4 x4 matrix $C\varphi$?

Newest Classification Theorem

(Joint work with C.K. Li, 2023)

Consider all $\varphi: M_2 \to M_2$ as unital trace-preserving and hermitian- preserving linear maps.

Then the 4 real eigenvalues of the Choi Matrix C_{φ} determine the linear map φ up to unitary equivalence.

I.e., iff C_{φ} and C_{ψ} have the same eigenvalues, then there exist unitaries U and W such that $\varphi(A) = U^*\Psi$ (W*AW)U for all A in M_2 .

The Most Important Example:

By means of Pauli Matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix},$$

and 4 real numbers λ_j with $\sum \lambda_j = 1$.

Define $\varphi: M_2 \rightarrow M_2$

as
$$\varphi(A) = \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$$

- \succ Then φ is a unital linear map preserving traces and hermitian matrices.
- \succ The Choi Matrix $C\varphi$ has $\{2\lambda_j\}$ as four eigenvalues.

Newest Classification Theorem

Restated

Each unital qubit channel φ (unital trace preserving completely positive linear map $M_2 \rightarrow M_2$) is unitarily equivalent to a concrete map of the $A \rightarrow \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$ where X, Y and Z are Pauli Matrices; $\{2\lambda_i\}$ are eigenvalues of the Choi Matrix $C \varphi$.

This provides the WHOLE picture of unital qubit channels.

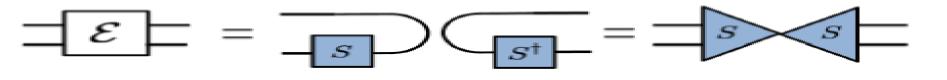
OPEN QUESTION

What would be next Classification Theorems?

Want to study the case n=3.

 Need to understand the quantum entanglement of

Γ1	0	0	0	1	0	0	0	1٦
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
L_1	0	0	0	1	0	0	0	1



This completes my Celebration of The C-J Isomorphism.

