Man-Duen Choi

choi@math.toronto.edu

Celebrating the Choi - Jamiołkowski Isomorphism

(KCK) on

Online Event March 1-2, 2023

From Real Meeting at Torun in 2008

To Quantum Online in 2023

Formal Title Celebrating the Choi - Jamiolkowski Isomorphism

Additional Sub-title

The Taming of the Shrew

of Positive Semi-Definite Matrices

Who's Afraid of

Quantum Entanglements?

Tensor- product setup for the **Taming** of the **Shrew**

Consider a Hilbert space

 $\mathsf{H}=\mathsf{H}_1\otimes \ \mathsf{H}_2 \ .$

Some natural / simple / easy phenomena on H could be entangled in H₁ and H₂ separately.

We wish to control the whole situation, bypassing / conquering /ignoring the entanglements.

Math Settings

- $\bigstar L^2(X \mathbf{X} \mathbf{Y}) = L^2(X) \otimes L^2(\mathbf{Y}).$
- Often consider of finite-dimensional Hilbert spaces
 as *Cⁿ* with a positive integer n.
- > Thus $\mathbf{C}^n \otimes \mathbf{C}^k = \mathbf{C}^{nk}$.

 $M_n = \text{linear maps from } \mathbf{C}^n \text{ to } \mathbf{C}^n$ $M_n \otimes M_k = M_{nk} = M_n (M_k) = M_k (M_n).$

--- no need to mention of anything as the universal property.

In such an easy mathematical setting, who is afraid of quantum entanglements and local-global effects with respect to

Math Settings $M_n \otimes M_k = M_{nk}$ (with n>1, k>1)

Reason: $M_n^+ = \{ \text{ positive linear combinations of rank-} 1 \text{ projections } \}$

•There are many rank-1 projections in M_{nk} which are not tensor product of rank-1 projections.

Along this line, completely positive linear maps can go through the quantum entanglements, while positive linear maps cannot.

Quantum Entanglements provide exciting features _ for positive linear maps

Structure Theory

Notation: Each linear map $\varphi : M_n \to M_k$ can be extended to a linear map

$$\varphi \otimes \operatorname{id}_p: M_n \otimes M_p \longrightarrow M_k \otimes M_p$$
 .

Def: φ is said to be *p*-positive when $\Phi \otimes \operatorname{id}_p$ is a positive linear map.

Def: φ is said to be *completely positive* when φ is a *p*-positive linear map for each positive integer *p*.

Structure Theory

Thm (Choi) : All *p*-positive linear maps from M_n to M_k are completely positive when $n \le p$ or $k \le p$.

• Nevertheless, various p provide distinct classes of *p*-positive linear maps as elaborated in the following:

Example (Choi): The linear map $\varphi : M_n \to M_n$ defined as $\varphi(A) = (n-1)(trace A)I_n - A$ is (n-1)-positve but not *n*-positive.

Main Thm: (Choi, 1975) A linear map

- $\varphi: M_n \rightarrow M_k$ is **completely positive**
- iff $[\varphi(E_{ij})]_{i,j}$ is positive
 - where $\{E_{ij}\}$ are the matrix units

iff
$$\varphi(A) = \sum V_j * A V_j$$
 for all $A \in M_n$

with n x k matrices V_i

- This 1975 paper (6 pages) has been cited in more than 2700 research papers, as of 2023 March Google Scholar
- More than 1500 citations in recent publications of Quantum Information.

• Each transformer defines a

positive linear map $A \rightarrow V^*AV$.

Thus several transformers in series define a completely positive linear map.

- Main concern in circuit theory: General linear maps of mathematical expressions in terms of $[\varphi(E_{ij})]_{i,j}$ are not implementable.
- Classical computer vs Quantum computer
 A classical computers produces 0-1 sequences while a quantum computers produces psd matrices. Thus only completely positive maps are usable to connect *Quantum computers*

The Main Thm (Choi 1975) revisited

- Let $\varphi: M_n \rightarrow M_k$ be a linear map. TFAE:
- (1) ϕ is p-positive for all positive integer p.
- (2) $[\varphi(E_{ij})]_{i,j}$ is positive

(3) $\varphi(A) = \Sigma V_j * A V_j$ for all $A \in M_n$ with n x k matrices V_j

(1) means to be the hardest nature to conquer all incredible quantum entanglements in (M_n & M_p)⁺ of various p.
 (2) is intended for the simplest mathematical expression of a general linear map.

(3) turns to be the only possible connection in circuit theory.

- Stinespring Theorem (1955) covers the case (1) \Leftrightarrow (3).
- ✤ Theorem1975 says much about (2) ⇔ (3) and (2) ⇔ (1), which is most needed in theory of quantum information.

Taming of Shreus

- NO way to describe so many incredible entanglements in $(M_n \otimes M_p)^+$ of various p.
- ➤ The most outstanding $T = \Sigma E_{ij} \otimes E_{ij} \in (M_n \otimes M_n)^+$, is *a* well behaved *entanglement* which serves as the representative for ALL wild entanglements.
- THEOREM says that to tame ALL shrews (= entanglements) is equivalent to tame a single LOVELY shrew (without worrying how nasty/dirty/undisciplined of other shrews). ¹³

of the LOVELY Shrew

Example
$$n = 3$$
, $T = \sum E_{ij} \otimes E_{ij} \in (M_3 \otimes M_3)^+ = M_9^+$

T is the NATURAL assemblage of matrix units

> Indeed, $T^2 = nT$, so $\frac{1}{n}T$ is a rank-1 projection, but *T* serves as the best witness to test all completely positive linear maps $M_3 \rightarrow M_3$.

Why Not Down to *n=2*?

The simplest example of quantum entanglement is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

as a positive 4 x 4 matrix, but not of the form as the sum of $A_j \otimes B_j$ with A_j in M_2^+ and B_j in M_2^+ .

Purpose: Wish to classify all linear maps $\varphi: M_2 \rightarrow M_2$ by means of the 4 x 4 Choi Matrix $C\varphi$

$\begin{bmatrix} \varphi \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \quad \varphi \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \\ \varphi \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \quad \varphi \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$

Challenge: What sort of non-commutative geometry could be hidden/shown in the 4 x4 matrix $C\varphi$?

Newest Classification Theorem

(Joint work with C.K. Li, 2023)

Consider all $\varphi : M_2 \rightarrow M_2$ as unital trace-preserving and hermitian- preserving linear maps.

Then the 4 real eigenvalues of the Choi Matrix C_{φ} determine the linear map φ up to unitary equivalence.

I.e., **iff** C_{φ} and C_{ψ} have the same eigenvalues, then there exist unitaries U and W such that $\varphi(A) = U^*\Psi$ (W*AW)U for all A in M_2 .

The Most Important Example:

By means of Pauli Matrices

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix},$$

and A real numbers λ with $\sum \lambda = 1$

and 4 real numbers
$$\lambda_j$$
 with $\sum \lambda_j = 1$.

Define
$$\varphi: M_2 \rightarrow M_2$$

as $\varphi(A) = \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$

- > Then φ is a unital linear map preserving traces and hermitian matrices.
- > The Choi Matrix $C\varphi$ has $\{2\lambda_i\}$ as four eigenvalues.

Each unital qubit channel $\,arphi$

(unital trace preserving completely positive linear map $M_2 \rightarrow M_2$)

is unitarily equivalent to a **concrete** map of the form $A \rightarrow \lambda_1 A + \lambda_2 ZAZ + \lambda_3 XAX + \lambda_4 YAY$, where *X*, *Y* and *Z* are Pauli Matrices;

 $\{2\lambda_i\}$ are eigenvalues of the Choi Matrix $C\varphi$.

This provides the WHOLE picture of unital qubit channels.

What would be next Classification Theorems ?

Want to study the case n=3.

 Need to understand the quantum entanglement of

Г1	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
L_1	0	0	0	1	0	0	0	1

 $= \underbrace{\mathcal{E}}_{=} = \underbrace{=}_{s} \underbrace{=}_{s^{\dagger}} = \underbrace{=}_{s} \underbrace{=}_{s^{\dagger}} \underbrace{=}_$

This completes my Celebration of

The C-J Isomorphism.

