SOME REMARKS ON THE BLOCK POSITIVE
AND POSITIVE MAPS IN PHYSICS

Andrzej Jamiotkowski

Institute of Physics, Nicolaus Copernicus University

KCIK, Gdansk, 1-2.03.2023

1/24



Preliminaries

My first publications

Vol. 2 1971) REPORTS ON MATHEMATICAL PHYSICS No.1

A SPINORIAL APPROACH TO PALATINI VARIATIONAL PRINCIPLES

A. JAMIOLKOWSKI
Tnstitute of Theoretical Physics, Nicholas Copernicus University, Torus !

(Received August 10, 1970)

Th condiion 75"~0 poslated

I principle of the Palatini type. A generalized action principle which yields
‘cquations, the Maxwell cquations and the algebraic relations among deriv-
atives of the metric quantities and connection quantities is studied. An action which
leads o the Einstein cquations with the energy-momentum tensor of a scalar massless
field i investigated.

1. Introduction

The relativity theory identifies space-time with a four-dimensional differentiable mani-
fold M,; the sct of the local maps on M, etablishes a correspondence between points
pe M and four real coordinates of the points p, x* (¢=0, 1,2, 3). The group of coordinate
transformations will be denoted by C.,.

Vol. 3 (1972) REPORTS ON MATHEMATICAL PHYSICS No.4

LINEAR TRANSFORMATIONS WHICH PRESERVE TRACE AND POSITIVE
SEMIDEFINITENESS OF OPERATORS

A. JAMIOLKOWSKI
Institute of Physics, Nicholas Copeenicus University, Torus, Poland

(Received November 15, 1971)

This work may be considercd a completion of the paper by J. de Pillis: Linear trans-
Jormations which preserve Hermitian and positive semidefinite operators, published in
1967 (21 aecssary conditons have ben formulated

o, be the full algebra of linear operators on the n-dimensional Hilbert space
1, and let 3 be the full algebra of lincar operators on the m-dimensional Hilbert
space JF;. Let Z(af,, ;) denote the complex space of linear maps from 4, to of;
and S denotes the cone of all Te (¥, f,) which send positive semidefinite operators
from &, 0 positive semidefinite operators from 5. The aim of this paper i o present
2 necessary and suficient condition for a transformation in #(<¢,, 3) o be in the
cone 5, and to preserve trace of the operators

1. Preliminaries and notation

Let # (2, ) be the vector space of linear transformations from the Hilbert space
2, with the inner product (-,-),, tothe Hilbert space ', with the inner product (*, )z "),
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Department of Statistical and Mathematical Physics in Torun

QUANTUM INFORMATION THEORY

ROVAN S. INGARDEN

Institute of Physics, Nicholas Copernicus University, 87-100 Torufi, Poland
(Received December 13, 1975)

A conceptual analysis of the classical information theory cf Shannon (1948) shows
that this theory cannot be dicectly generalized to the usual quantum case. The reason is
that in the usual quantum mechanics of closed systems there is no general concept of joint
and conditional probability. Using, however, the generalized quantum mechanics of open
systems (A. Kossakowski 1972) and the generalized concept of observable (*semiotsary-
able”, E. B. Davies and J. T. Lewis 1970) it is possible 1o construct a quantum infor-
mation theory being then a straightforward generalization of Shannon's theory.

1. Introduction

Information theory, as it is understood in this paper and as it is usually understood
by mathematicians and engineers following the pioncer paper of Shannon [S7], is not
only a theory of the entropy concept itself (in this aspect information theory is most in-
teresting for physicists), but also a theory of transmission and coding of information, i.c.,
a theory of information sources and channels. In the case of classical (i.¢., non-quantum)
systems both parts of the theory are closely connected, this connection being actually
accomplished in probability theory forming a theoretical background of information
theory. The clue concepts are those of joint and conditional probability which enable to
formulate the definition of information sources and channels and then of the concept
of channel capacity which is the most important for Shannon’s coding theorems. In the
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During the past five decades studies of positive maps represented
one of the most active and fertile research topics in matrix algebra
and, more generally, in C*-algebra theory. In recent years, there
have been many papers which studied duality between linear
operators on the tensor product of two Hilbert spaces H; ® H,
and linear maps that send elements of the algebra B(JH;) of linear
operators on JH; to elements of B(H,),

Very often the motivation for such investigations comes from
physics, in particular from the theory of open quantum systems and
from quantum information theory.
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The main objective of my presentation is to discuss some properties
of linear maps which are positive but not completely positive (CP)
and the structure of such maps.

These maps correspond to the so-called entanglement witnesses —
special observables defined on Hilbert spaces of composed quantum
systems. For simplicity we will restrict ourselves to the simplest case
of composite systems: bipartite systems of finite, but otherwise
arbitrary dimensions. States of such systems are, in general, mixed
and are described by density matrices.
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Let A = B(H) be the full algebra of linear operators on
N-dimensional Hilbert space JH. If H = H; ® H,, then the
algebras B(H; @ Hy) and B(H;) @ B(H,) are isomorphic. The
inner product in the vector space H; ® H; is defined by

((a @y, @) = (xi,%)1 - (v1,2)2 (2)

for all x1,x0 € J{; and y1,y» € Hs, and extended by linearity for
general expressions in {3 ® JH,. Symbols (-, -); and (-, - )2
denote inner products in H; and s, respectively.
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One defines the inner product in the algebra A; ® A which gives
analogously the Hilbert space structure

[[A1 ® B1, Ay ® By]] := [A1, A1 - [B1, B2)2 (3)

for all A1, A € .Al = B(J‘Cl) and all By, B, € .Az = B(f}fz)
Symbols [+, -]1 and [-, - ]2 stand for inner products in Ay and Aj,
respectively, and [X, Y]; := tr;(XY™).
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It is well known that if a linear map ® : A — A sends the set
A, ={X e A: X =X*} of all hermitian elements of A into
itself, then ® can be represented in the form

K
O(X) = Y aKiXK;, (4)
i=1
where K; € A, and a;, i = 1,..., K, are real numbers.

In general, all maps of the above form are hermiticity preserving,
yet this representation is not unique: typically for a given ® there
exist many possible representations of the form (4). The smallest s
in (4) is called the minimal length of ®. If we assume that the
operators K;, for i = 1,..., K, are linearly independent, then « in
(4) must be minimal.
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k-Positive Maps

Recall that a map ¢ : A — A which preserves the set A, of
hermitian elements is called positive if ®(X) > 0 whenever X € A
is positive, i.e. (X7, n) = 0 for all n € J.

k-Positive maps
A map ® is called k-positive if its k-amplification ®(k) := 1} ® O,
that is the map

I ®® : M(C) ® A — Mi(C) ® A (5)

is positive.

V.

My (C) denotes here the set of all k x k complex matrices. We can
identify M,(C) ® A with the set of all k x k matrices My (A) with
entries from A.
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Completely Positive Maps

Definition

® is called completely positive if it is k-positive for all k =1,2,....

This terminology goes back to Stinespring. It is well known that for
A = B(H), where H denotes N-dimensional Hilbert space,
N-positive maps on A are already completely positive, (M. D. Choi).

Let us observe that all hermitian-preserving maps which are not
only positive but completely positive can be written in the form (4)
with positive a;, i = 1,...k, i.e. by

d(X) = ik,-xk,*, (6)
i=1

where K; = VaiKi and k < N?. Relation (6) is the so-called Kraus
representation of a completely positive map .
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Completely Positive Maps

Kraus representation is very useful in quantum information theory.
In particular, CP maps are used to describe the so-called quantum
operations and quantum channels. In general, any map which is
positive but not completely positive can be represented as a
difference of two CP maps

K1 K2
O(X) = > KXK' — Y MXM;, (7)
i—1 j=1
where operators Ky, ..., K.,, Mi,..., M, are linearly independent
and
K = K1+ K2 (8)

denotes the minimal length of ®.

It was shown by R. Timoney that any map ® of the form (7) which
is p-positive, where p = [\/k], must be completely positive.
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Entanglement Witnesses

In fact, there exists a close relationship between positive maps
which are not completely positive and the concept of entanglement
witnesses, i.e. observables (self-adjoint operators) on Hilbert spaces
of composite systems that permit to detect the presence of
entangled states.

Entanglement witness

An operator W € B(H; ® H3) is an entanglement witness if it
fulfils the following conditions

() (x®y, Wx®y))>0forall x e H; and y € Hy,
(i) there exists n € H; ® Hy such that ((n, Wn)) < 0.
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Entanglement Witnesses

In simple words, an entanglement witness, not being a positive
operator itself, is positive on product states (in quantum-informat-
ion terminology: on separable pure states).

Recall that there exists a one-to-one correspondence between
positive maps ¢ : B(H;) — B(H3) and hermitian operators W on
Hi1 ® Hy that fulfil condition (i), (x® y, Wx ® y)) > 0. In other
words, there exists an isomorphism

Q: B(A1, Az) = B(H; @ H) (9)
defined by
Q@) = Y E @ (E), (10)

where & : B(H;) — B(H(,) and {E;}"¥, is any orthonormal basis
in./ll == 23(:}61).
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Entanglement Witnesses

Denoting We = Q(®) we can say that a linear map ® € B(A;, A»)
transforms hermitian operators in A; to hermitian operators in A»
if and only if the operator W4 is hermitian on H; @ Ho,.

Analogously, it was proved more than five decades ago that a linear
hermitian map ®(X) = Y 7., ajK; XK sends positive operators in
Aj to positive operators in A, if and only if the operator W4, fulfils

(x@y, Wox®y)) >0 (11)

for all x € H; and y € Ho.

14/24



Entanglement Witnesses

Of course, the condition ((x ® y, Wex ® y)) > 0 is weaker than
the condition for positive semi-definiteness on H; ® Ho, since
vectors of the form x ® y do not constitute the whole vector space
Hi @ Hoy. If we have ((n, Wen)) > 0 for all n € Hy @ Hy, then ¢
is completely positive.

This means that observables that are entanglement witnesses
correspond to positive maps which are not completely positive or,
on the base of the previous discussion, have the form

K1 K2
d(X) = Z KiXKF — Z MiXM
i=1 j=1

with minimal length k1 + k5.
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The Structure of CP Maps

Let M,(C) be the space of n x n complex matrices. Examining the
expression

K
= > AXAf (12)
i=1

we see that every CP map can be associated with the subalgebra of
M,(C), namely, the algebra A(Aq,...,As) generated by

A1, ..., Ag. Intuitively, this algebra contains all expressions in the
form A"lA”1 -+ A" and their linear combinations. This algebra is
mdependent of the particular representation (12), and thus we can
also use the notation A(®). Every quantum map has to be
positive, i.e. it has to preserve the positive cone M, (C) in M,(C).
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The Structure of CP Maps

Irreducible maps

A CP map ¢ : M,(C) — M,(C) is called irreducible if there exists
no nontrivial face of the cone M, (C) invariant under .

If the map ® is given by its Kraus decomposition, the above
definition can be expressed in an equivalent way:

Irreducible maps
A CP map ¢ : M,(C) — M,(C) given by

O(X) = > AXA;
i=1

is irreducible iff the operators Ay, ..., A, have no nontrivial
common invariant subspace.

Trivial subspaces are {0} and C".
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The Structure of CP Maps

Now, we will make use of the classical result stating that if a given
algebra A(®) is a *-algebra, i.e. it is closed under Hermitian
conjugation, then one can choose an orthonormal basis in which A
is block-diagonal (Barker, Eifler, Kezlan, 1978).

Corollary

Let H ~ C", B(H) ~ M,(C) and let ¢ : M,(C) — M,(C) be a

trace preserving or unital CP map written in the Kraus form,

O(X) = Y AXA;. (13)
i=1
If A(A1,...,As) is a *-algebra, then there exists an orthonormal
basis {e;}7_; and natural numbers di, ..., dy for which all Kraus

operators have the block diagonal form, where each block A;;, has
dimension dm X dm, >_;d; = n and A(Aim, -y Acm) =~ My, (C).

v

18 /24



The Structure of CP Maps

Consequently, there exists a decomposition of the Hilbert space H
such that

N
H = @ﬂ{j, (14)
j=1
where dimHy =d for k=1,....N, Aim : H,, — H,,, and
Aim = A,-\g{m. (15)

The most important examples of the maps for which the algebra
A(®) is a *-algebra are unital quantum channels. In essence, the
above Corollary states that if A(®) is a *-algebra, then one can
decompose (“reduce”) the Kraus operators into smaller, irreducible
blocks.
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The Structure of CP Maps

Now the question is, how we can investigate the structure of the
algebra A(®), in order to check the dimensionality of the blocks in
the decomposition of the algebra (we are dealing with maps for
which A(®) is a *-algebra, so such decomposition exists). There
are several tools for analysing the internal structure of the algebra
A(®) using only its generators, that is, its Kraus operators. The
most important are the Shemesh criterion and the Amitsur-Levitzki
theorem.
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The Structure of CP Maps

Theorem (Shemesh 1984)

Matrices A, B € M,(C) have a common eigenvector if and only if

M = nﬁl ker[A¥, B] # {0}. (16)

k=1

It is not difficult to show that M is the smallest subspace of

H = C" which contains all common eigenvectors of the matrices A
and B. At the same time, the subspace M defined in (16) is the
common invariant subspace of A and B on which they commute.

Condition (16) can be represented in an equivalent form: A and B
have a common eigenvector iff

det (Zl [A",B’]*[Ak,B’]> = 0.

k=1
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The Structure of CP Maps

There exists a generalisation of the Shemesh theorem for an
arbitrary number of matrices.

Theorem (Pastuszak, Jamiotkowski, 2015)

Assume that H, A;, ... As € M,(C) and that H has all distinct
eigenvalues. Let

n—1 s
N(H, Ar,...,As) = () [ ker[H* A]. (17)
k=1 i=1
Then the marices H, A1, ..., As have a common eigenvector iff

N(H, Ay, ..., As) # {0}.
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The Structure of CP Maps

The standard polynomial for n noncommutative variables
Xi, ..., Xy is defined in the following way:

Sa(Xi,. o, Xn) = > sign Xp) - Xo(n) » (18)
g€S,
where the summation runs over all permutations of {1,..., n}.

Theorem (Amitsur and Levitzki, 1950)

The full matrix algebra M, (C) satisfies the standard polynomial
identity of order 2n, that is, for all matrices Ay ..., Az, we have

Son(At, ..., Azn) = 0. (19)

Moreover the algebra M,(C) satisfies no identity of order smaller
than 2n.
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The Structure of CP Maps

Let us observe that according to the above theorem the algebra
My+1(C) cannot satisfy the standard identity for n = 2d. In other
words, the algebra M, (C) satisfies the identity Spy = 0 when

k < d, but does not satisfy it for k > d + 1.

The way of using the Amitsur-Levitzki theorem to analyze the
structure of CP maps is discussed in:

A. Jamiotkowski, “Applications of Pl algebras to the analysis of
quantum channels”, Int. J. Quant. Inf., 2012.

24 /24



