Genuine Bell nonlocality in many-body quantum systems

Bachelor thesis written under supervision of dr hab. inż. Remigiusz Augusiak and dr hab. Rafał Demkowicz-Dobrzański

Ignacy Stachura

Genuine multipartite entanglement

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

- We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.

Genuine multipartite entanglement

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

- We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.
- We divide the set of subsystems into two non-empty subsets: a subset g and its complement denoted as \bar{g}.

Genuine multipartite entanglement

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

- We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.
- We divide the set of subsystems into two non-empty subsets: a subset g and its complement denoted as \bar{g}.
- We ask whether the state is separable across a given partition $g \mid \bar{g}$.

Genuine multipartite entanglement

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

- We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.
- We divide the set of subsystems into two non-empty subsets: a subset g and its complement denoted as \bar{g}.
- We ask whether the state is separable across a given partition $g \mid \bar{g}$.
- We consider all the possible partitions.

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

- We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.
- We divide the set of subsystems into two non-empty subsets: a subset g and its complement denoted as \bar{g}.
- We ask whether the state is separable across a given partition $g \mid \bar{g}$.
- We consider all the possible partitions.

$$
\begin{aligned}
& \rho_{\mathrm{A}}= \sum_{g \mid \bar{g}} q_{g \mid \bar{g}} \sum_{i} p_{i}^{g \mid \bar{g}}\left|\psi_{g}^{i}\right\rangle\left\langle\psi_{g}^{i}\right| \otimes\left|\psi_{\bar{g}}^{i}\right\rangle\left\langle\psi_{\bar{g}}^{i}\right|, \\
& \sum_{g \mid \bar{g}} q_{g \mid \bar{g}}=1, \quad \forall g \mid \bar{g} \\
& \sum_{i} p_{i}^{g \mid \bar{g}}=1
\end{aligned}
$$

$$
\rho_{A B}=\sum_{i} p_{i}\left|\psi_{A}^{i}\right\rangle\left\langle\psi_{A}^{i}\right| \otimes\left|\phi_{B}^{i}\right\rangle\left\langle\phi_{B}^{i}\right|, \quad p_{i} \geqslant 0, \quad \sum_{i} p_{i}=1
$$

■ We consider a system $\mathrm{A}:=A^{1}, \ldots, A^{N}$ consisting of N subsystems.
■ We divide the set of subsystems into two non-empty subsets: a subset g and its complement denoted as \bar{g}.
■ We ask whether the state is separable across a given partition $g \mid \bar{g}$.
■ We consider all the possible partitions.

$$
\begin{aligned}
\rho_{\mathrm{A}}= & \sum_{g \mid \bar{g}} q_{g \mid \bar{g}} \sum_{i} p_{i}^{g} \mid \bar{g} \\
& \left.\sum_{g \mid \bar{g}} q_{g} \psi_{g}^{i}\right\rangle\left\langle\psi_{g}^{i}\right| \otimes 1, \quad \forall_{g \mid \bar{g}} \sum_{i} p_{i}^{g \mid \bar{g}}=1
\end{aligned}
$$

GME

States that do not admit the above are GME states.

Bell-like experiment

In (N, m, d) scenario we obtain the conditional probabilities

$$
\begin{gathered}
p\left(a_{1}, \ldots, a_{N} \mid x_{1}, \ldots x_{N}\right) \\
a_{i} \in\{1, \ldots, d\} \quad x_{i} \in\{1, \ldots, m\} .
\end{gathered}
$$

$$
p\left(a_{1}, a_{2} \mid x_{1}, x_{2}\right)=\sum_{\lambda} q(\lambda) p\left(a_{1} \mid x_{1}, \lambda\right) p\left(a_{2} \mid x_{2}, \lambda\right)
$$

- Correlations bilocal across a partition $g \mid \bar{g}$:

$$
p(\vec{a} \mid \vec{x})=\sum_{\lambda} q(\lambda) p\left(\vec{a}_{g} \mid \vec{x}_{\bar{g}}, \lambda\right) p\left(\vec{a}_{\bar{g}} \mid \vec{x}_{\bar{g}}, \lambda\right) .
$$

$$
p\left(a_{1}, a_{2} \mid x_{1}, x_{2}\right)=\sum_{\lambda} q(\lambda) p\left(a_{1} \mid x_{1}, \lambda\right) p\left(a_{2} \mid x_{2}, \lambda\right)
$$

- Correlations bilocal across a partition $g \mid \bar{g}$:

$$
p(\vec{a} \mid \vec{x})=\sum_{\lambda} q(\lambda) p\left(\vec{a}_{g} \mid \vec{x}_{\bar{x}}, \lambda\right) p\left(\vec{a}_{\bar{g}} \mid \vec{x}_{\bar{z}}, \lambda\right) .
$$

- Just bilocal correlations:

$$
\begin{aligned}
& p(\vec{a} \mid \vec{x})= \sum_{g \mid \bar{g}} \\
& \sum_{\lambda} q_{g}(\lambda) p\left(\vec{a}_{g} \mid \vec{x}_{g}, \lambda\right) p\left(\vec{a}_{\bar{g}} \mid \vec{x}_{\bar{g}}, \lambda\right) \\
& \sum_{g \mid \bar{g}} \sum_{\lambda} q_{g}(\lambda)=1
\end{aligned}
$$

$$
p\left(a_{1}, a_{2} \mid x_{1}, x_{2}\right)=\sum_{\lambda} q(\lambda) p\left(a_{1} \mid x_{1}, \lambda\right) p\left(a_{2} \mid x_{2}, \lambda\right)
$$

- Correlations bilocal across a partition $g \mid \bar{g}$:

$$
p(\vec{a} \mid \vec{x})=\sum_{\lambda} q(\lambda) p\left(\vec{a}_{g} \mid \vec{x}_{\bar{g}}, \lambda\right) p\left(\vec{a}_{\bar{g}} \mid \vec{x}_{\bar{g}}, \lambda\right) .
$$

- Just bilocal correlations:

$$
\begin{gathered}
p(\vec{a} \mid \vec{x})=\sum_{g \mid \bar{g}} \sum_{\lambda} q_{g}(\lambda) p\left(\vec{a}_{g} \mid \vec{x}_{g}, \lambda\right) p\left(\vec{a}_{\bar{g}} \mid \vec{x}_{\bar{g}}, \lambda\right) \\
\sum_{g \mid \bar{g}} \sum_{\lambda} q_{g}(\lambda)=1
\end{gathered}
$$

GMNL

Correlations that are not bilocal are GMNL.

Beyond the simplest scenario

Two subsystems
More subsystems
■ There exist mixed 2-qudit entangled states that are local.

Beyond the simplest scenario

Two subsystems
More subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

Beyond the simplest scenario

Two subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

More subsystems

- There exist mixed GME states that are not GMNL.

Beyond the simplest scenario

Two subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

More subsystems

- There exist mixed GME states that are not GMNL.

■ Conjecture: All pure GME states are GMNL.

Beyond the simplest scenario

Two subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

More subsystems

- There exist mixed GME states that are not GMNL.

■ Conjecture: All pure GME states are GMNL.

- 3-qubit states with symmetry between 2 qubits

Two subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

More subsystems

- There exist mixed GME states that are not GMNL.
■ Conjecture: All pure GME states are GMNL.
- 3-qubit states with symmetry between 2 qubits
■ special cases e.g. GHZ states for any n

Two subsystems
■ There exist mixed 2-qudit entangled states that are local.

■ All pure 2-qudit entangled states are nonlocal.

More subsystems

- There exist mixed GME states that are not GMNL.
■ Conjecture: All pure GME states are GMNL.
- 3-qubit states with symmetry between 2 qubits
■ special cases e.g. GHZ states for any n
- some numerical results e.g 3-qubit states

Bell inequalities witnessing GMNL

F. J. Curchod et al., New J. Phys. 21, 023016 (2019)

- CHSH inequality

$$
I A B=p(00 \mid 00)-p(01 \mid 01)-p(10 \mid 10)-p(00 \mid 11) \leqslant 0
$$

F. J. Curchod et al., New J. Phys. 21, 023016 (2019)

- CHSH inequality

$$
I A B=p(00 \mid 00)-p(01 \mid 01)-p(10 \mid 10)-p(00 \mid 11) \leqslant 0
$$

- Lifted term

$$
\begin{aligned}
& \quad I A B_{0 \mid 0}=p(000 \mid 000)-p(000 \mid 010)-p(100 \mid 100)-p(000 \mid 110) \\
& A \in g \quad B \in \bar{g} \Longrightarrow I A B_{0 \mid 0} \leqslant 0
\end{aligned}
$$

F. J. Curchod et al., New J. Phys. 21, 023016 (2019)

- CHSH inequality

$$
I A B=p(00 \mid 00)-p(01 \mid 01)-p(10 \mid 10)-p(00 \mid 11) \leqslant 0
$$

- Lifted term

$$
I A B_{0 \mid 0}=p(000 \mid 000)-p(000 \mid 010)-p(100 \mid 100)-p(000 \mid 110)
$$

$A \in g \quad B \in \bar{g} \Longrightarrow I A B_{0 \mid 0} \leqslant 0$

- Let us consider partition $g \mid \bar{g}$ RYSUNEK

Bell inequalities witnessing GMNL

Centered inequalities

$$
I_{1}^{n}:=\sum_{i=2}^{n} I_{\hat{0} \mid \overrightarrow{0}}^{1 i}-(n-2) p(\overrightarrow{0} \mid \overrightarrow{0}) \leqslant 0
$$

Rysunek

Symmetrical inequalities
$l_{s y m}^{n}:=\sum_{i} \sum_{j>i} I_{\overrightarrow{0} \mid \overrightarrow{0}}^{A_{i} A_{j}}-\binom{n-1}{2} p(\overrightarrow{0} \mid \overrightarrow{0}) \leqslant 0$
Rysunek

$$
\tilde{I}_{1}^{n}:=\sum_{i=2}^{n} l_{\overrightarrow{0} \mid \overrightarrow{0}}^{1 i}-(n-2) p(\overrightarrow{0} \mid \overrightarrow{0}) \leqslant 0
$$

While in the case of 3-qubit GHZ I_{1}^{n} is resistant to around 5% of white noise, the new inequality for 10% still detects GMNL.

More general scheme of lifting allows for derivation inequalities for qudits.

