
Genuine Bell nonlocality in many-body quantum
systems

Bachelor thesis written under supervision of
dr hab. inż. Remigiusz Augusiak and
dr hab. Rafał Demkowicz-Dobrzański

Ignacy Stachura



Genuine multipartite entanglement

ρAB =
∑
i

pi
∣∣ψi

A

〉〈
ψi
A

∣∣⊗ ∣∣φiB〉〈φiB ∣∣ , pi  0,
∑
i

pi = 1

We consider a system A := A1, . . . ,AN consisting of N subsystems.

We divide the set of subsystems into two non-empty subsets: a
subset g and its complement denoted as ḡ .

We ask whether the state is separable across a given partition g |ḡ .
We consider all the possible partitions.
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GME

States that do not admit the above are GME states.
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i

∣∣ψi
g

〉〈
ψi
g

∣∣⊗ ∣∣ψi
ḡ
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Bell-like experiment
In (N,m, d) scenario we obtain the conditional probabilities

p(a1, ..., aN |x1, ...xN),
ai ∈ {1, . . . , d} xi ∈ {1, . . . ,m}.

3

...
a3 x3
0    1
1    1
0    1

2

a2 x2
1   0
1    1
0    1

1

a1 x1
0    1
1    0
1    1

N

an xn

0    0
1    1
1    1

.



Genuine multipartite nonlocality
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Just bilocal correlations:

p(a⃗|x⃗) =
∑
g |ḡ
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Correlations that are not bilocal are GMNL.
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Beyond the simplest scenario

Two subsystems

There exist mixed 2-qudit
entangled states that are local.

All pure 2-qudit entangled
states are nonlocal.

More subsystems

There exist mixed GME states
that are not GMNL.
Conjecture: All pure GME
states are GMNL.

3-qubit states with symmetry
between 2 qubits
special cases e.g. GHZ states
for any n
some numerical results e.g
3-qubit states
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Bell inequalities witnessing GMNL

F. J. Curchod et al., New J. Phys. 21, 023016 (2019)

CHSH inequality

IAB = p(00|00)− p(01|01)− p(10|10)− p(00|11) ¬ 0

Lifted term

IAB0|0 = p(000|000)− p(000|010)− p(100|100)− p(000|110)

A ∈ g B ∈ ḡ =⇒ IAB0|0 ¬ 0
Let us consider partition g |ḡ RYSUNEK
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Bell inequalities witnessing GMNL

Centered inequalities

I n1 :=

n∑
i=2
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Symmetrical inequalities

I nsym :=
∑

i

∑
j>i

I
AiAj

0⃗|⃗0
−
(
n − 1
2

)
p(⃗0|⃗0) ¬ 0

Rysunek



Results

I n1 :=
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While in the case of 3-qubit GHZ I n1 is resistant to around 5% of white
noise, the new inequality for 10% still detects GMNL.

More general scheme of lifting allows for derivation inequalities for qudits.


