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Unitary complexity

I (Approximate) complexity of a unitary U ∈ U(d) = number of
elementary gates needed to approximate U to given accuracy.
(take d = 2n for n qubits)

I Formally: fix a finite universal gateset G (e.g. some
discretization of all 2-local gates). Let Cε(U) be the smallest
k such that for some V1, . . . ,Vk ∈ G we have:

‖U − V1 · V2 · · · · · Vk‖� < ε

I State complexity: fix an initial state |0〉 and let Cε(|ψ〉) be the
smallest k such that for some V1, . . . ,Vk ∈ G we have:

dtr (|ψ〉 ,V1 · V2 · · · · · Vk |0〉) < ε

(trace distance)
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Unitary complexity

Motivation:

I Understanding complexity of naturally occuring unitary
operations.

I Many-body physics: time evolutions Ut = e−iHt generated by
chaotic Hamiltonians H (e.g. disordered local Hamiltonian,
SYK model) should have high complexity (some measure of
thermalization, chaotic behavior)

I AdS-CFT correspondence: Brown-Susskind conjecture –
complexity of a chaotic Hamiltonian evolution (or some toy
model thereof) typically grow linearly with time t for
exponentially long time.

Note: lower bounding complexity for specific unitaries seems
hopelessly difficult! Classical circuit lower bounds – P 6= NP type
of questions.
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Random Quantum Circuits

So, time to introduce some randomnes...

I choose local gates Ui ,i+1 to be Haar random unitaries from
2-qubit unitaries U(4), run for depth t.

I approaches Haar measure on U(d) as t →∞; k-design
properties known (Brandao, Harrow, Horodecki 2016).
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Random Quantum Circuits

I Brown-Susskind conjecture: complexity of a random
quantum circuit typically grows linearly with depth t until
exponential value (no shortcuts). Proved in some settings
(exact complexity) by Haferkamp, Faist, Kothakonda, Eisert,
Yunger Halpern (2022) and Haferkamp (2023). Still open!



Why are random unitaries complex?

Haar random U: typically no structure = high complexity.

If complexity > k, then U lies outside the union of ε-balls around
{G1,G2, . . . } ∈ Gk (words of length at most k)...

B(I , ε)
B(G4, ε)B(G1, ε)

B(G2, ε)

B(G5, ε)B(G3, ε)
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Unitary complexity

A single ball has volume ∼ εd2
, so total volume ≤ |G|kεd2

– very
small if k . 1

log |G| · d
2 log

(
1
ε

)

Solovay-Kitaev theorem: every U has complexity at most
c(G) · d2 logγ

(
1
ε

)
for some γ < 4. So Haar random unitaries have

typically maximal complexity.
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Our results

How about Hamiltonian evolutions? What is the complexity of the
time evolution Ut = e−iHt as a function of time, where H is a
random Hamiltonian?

Would like to prove something for local Hamiltonian with random
couplings:

H =
∑
i

giHi

where Hi - local, ‖Hi‖ = 1, constants gi – random couplings.
Difficult :(
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Our results

Instead, consisder a ”mean-field” random matrix GUE model
(prominent e.g. in quantum chaos):

I The random Hamiltonian H is taken to be the d × d GUE
matrix (Gaussian Unitary Ensemble, standard in random
matrix theory, strongly interacting) – independent Gaussian
entries:

Hii ∼ real Gaussian of variance 1

Hij ∼ complex Gaussian of variance 1

Hij = Hji

I caveat: H is nonlocal



Our results

Theorem (Complexity jump for GUE evolutions)

Let tesc = Cε, tjump = C ′ε (C ′ > C ). With high probability over
H ∼ GUE (d)

(a) For all times time t ∈ [0, tesc ] complexity of evolution Ut is
trivial: Cε(Ut) = 0 .

(b) For any fixed time t > tjump complexity satisfies

Cε(Ut) ≥ C ′′ε2

log |G|d
2 (almost maximal wrt. d)

Much more powerful than non-rigorous heuristics based on frame
potentials and moment computations (Cotler, Hunter-Jones, Liu,
Yoshida 2017).
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Our results

tesc tjump

· · ·

t

Cε(Ut)

· · ·Cmax ∼ d2



Very high level proof ideas

I Idea 1: GUE ensemble is unitarily invariant: the eigenbasis of
H is Haar random! Use it to exclude all balls around G 6= I
(technically: concentration of measure on the unitary group)

B(I , ε)
B(G4, ε)B(G1, ε)

B(G2, ε)

B(G5, ε)B(G3, ε)

I Idea 2: use concentratino of measure for the spectrum of
GUE matrix to control how spread out the distribution is (not
too concentrated on the ball around identity).
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Open problems and loose ends

I more classes of Hamiltoians: prove something for random
local Hamiltonians (SYK?), or at least something more
slightly more realistic than GUE

I recurrence and saturation properties of Ut (similar to
Oszmaniec, Horodecki, Hunter-Jones, Kotowski for RQC) –
more difficult since the evolution is not Markovian

Thank you!
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